Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Understanding the interaction and immobilization of [NiFe] hydrogenases on functionalized surfaces is important in the field of biotechnology and, in particular, for the development of biofuel cells. In this study, we investigated the adsorption behavior of the standard [NiFe] hydrogenase of Desulfovibrio gigas on amino-terminated alkanethiol self-assembled monolayers (SAMs) with different levels of protonation. Classical all-atom molecular dynamics (MD) simulations revealed a strong correlation between the adsorption behavior and the level of ionization of the chemically modified electrode surface. While the hydrogenase undergoes a weak but stable initial adsorption process on SAMs with a low degree of protonation, a stronger immobilization is observable on highly ionized SAMs, affecting protein reorientation and conformation. These results were validated by complementary surface-enhanced infrared absorption (SEIRA) measurements on the comparable [NiFe] standard hydrogenases from Desulfovibrio vulgaris Miyazaki F and allowed in this way for a detailed insight into the adsorption mechanism at the atomic level. © 2012 American Chemical Society.

Registro:

Documento: Artículo
Título:Effect of the protonation degree of a self-assembled monolayer on the immobilization dynamics of a [NiFe] hydrogenase
Autor:Utesch, T.; Millo, D.; Castro, M.A.; Hildebrandt, P.; Zebger, I.; Mroginski, M.A.
Filiación:Institut für Chemie, Technische Universität Berlin, Sekretariat PC 14, 10623 Berlin, Germany
Biomolecular Spectroscopy, LaserLaB Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1083, NL-1081 HV Amsterdam, Netherlands
Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Piso 1, C1428EHA Buenos Aires, Argentina
Palabras clave:[NiFe]-hydrogenase; Adsorption behavior; Adsorption mechanism; Alkanethiols; Amino-terminated; Atomic levels; Chemically modified electrode; Desulfovibrio; Desulfovibrio vulgaris; Functionalized surfaces; Gigas; Highly-ionized; Hydrogenases; Initial adsorption; Low degree; Molecular dynamics simulations; Protonation degree; Sams; Strong correlation; Surface-enhanced infrared absorptions; Adsorption; Fluorine; Ionization; Light absorption; Molecular dynamics; Protonation; Self assembled monolayers; Organic polymers; alkane; bacterial protein; gold; hydrogenase; immobilized protein; nickel iron hydrogenase; nickel-iron hydrogenase; proton; thiol derivative; adsorption; article; chemistry; Desulfovibrio gigas; Desulfovibrio vulgaris; electrode; enzymology; kinetics; molecular dynamics; pH; thermodynamics; Adsorption; Alkanes; Bacterial Proteins; Desulfovibrio gigas; Desulfovibrio vulgaris; Electrodes; Gold; Hydrogen-Ion Concentration; Hydrogenase; Immobilized Proteins; Kinetics; Molecular Dynamics Simulation; Protons; Sulfhydryl Compounds; Thermodynamics
Año:2013
Volumen:29
Número:2
Página de inicio:673
Página de fin:682
DOI: http://dx.doi.org/10.1021/la303635q
Título revista:Langmuir
Título revista abreviado:Langmuir
ISSN:07437463
CODEN:LANGD
CAS:gold, 7440-57-5; hydrogenase, 9027-05-8; proton, 12408-02-5, 12586-59-3; thiol derivative, 13940-21-1; Alkanes; Bacterial Proteins; Gold, 7440-57-5; Hydrogenase, 1.12.7.2; Immobilized Proteins; Protons; Sulfhydryl Compounds; nickel-iron hydrogenase, 1.12.-
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v29_n2_p673_Utesch

Referencias:

  • Adams, M.W.W., Mortenson, L.E., Chen, J.S., Hydrogenase (1980) Biochim. Biophys. Acta, Rev. Bioenerg., 594, pp. 105-176
  • Lojou, E., Hydrogenases as catalysts for fuel cells: Strategies for efficient immobilization at electrode interfaces (2011) Electrochim. Acta, 56, pp. 10385-10397
  • Vignais, P.M., Billoud, B., Occurrence, classification, and biological function of hydrogenases: An overview (2007) Chem. Rev., 107, pp. 4206-4272
  • Vincent, K.A., Cracknell, J.A., Lenz, O., Zebger, I., Friedrich, B., Armstrong, F.A., Electrocatalytic hydrogen oxidation by an enzyme at high carbon monoxide or oxygen levels (2005) Proc. Natl. Acad. Sci. U.S.A., 102, pp. 16951-16954
  • Vincent, K.A., Cracknell, J.A., Clark, J.R., Ludwig, M., Lenz, O., Friedrich, B., Armstrong, F.A., Electricity from low-level H 2 in still air - An ultimate test for an oxygen tolerant hydrogenase (2006) Chem. Commun., pp. 5033-5035
  • Lyon, E.J., Shima, S., Boecher, R., Thauer, R.K., Grevels, F.W., Bill, E., Roseboom, W., Albracht, S.P.J., Carbon monoxide as an intrinsic ligand to iron in the active site of the iron-sulfur-cluster-free hydrogenase H 2 -forming methylenetetrahydromethanopterin dehydrogenase as revealed by infrared spectroscopy (2004) J. Am. Chem. Soc., 126, pp. 14239-14248
  • Vignais, P.M., Billoud, B., Meyer, J., Classification and phylogeny of hydrogenases (2001) FEMS Microbiol. Rev., 25, pp. 455-501
  • Volbeda, A., Garcin, E., Piras, C., De Lacey, A.L., Fernandez, V.M., Hatchikian, E.C., Frey, M., Fontecilla-Camps, J.C., Structure of the [NiFe] hydrogenase active site: Evidence for biologically uncommon Fe ligands (1996) J. Am. Chem. Soc., 118, pp. 12989-12996
  • Fontecilla-Camps, J.C., Volbeda, A., Cavazza, C., Nicolet, Y., Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases (2007) Chem. Rev., 107, pp. 4273-4303
  • Pierik, A.J., Roseboom, W., Happe, R.P., Bagley, K.A., Albracht, S.P.J., Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of [NiFe]-hydrogenases (1999) J. Biol. Chem., 274, pp. 3331-3337
  • Stein, M., Lubitz, W., Quantum chemical calculations of [NiFe] hydrogenase (2002) Curr. Opin. Chem. Biol., 6, pp. 243-249
  • De Lacey, A.L., Fernandez, V.M., Rousset, M., Cammack, R., Activation and inactivation of hydrogenase function and the catalytic cycle: Spectroelectrochemical studies (2007) Chem. Rev., 107, pp. 4304-4330
  • Ogata, H., Lubitz, W., Higuchi, Y., [NiFe] hydrogenases: Structural and spectroscopic studies of the reaction mechanism (2009) Dalton Trans., pp. 7577-7587
  • Cracknell, J.A., Vincent, K.A., Armstrong, F.A., Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis (2008) Chem. Rev., 108, pp. 2439-2461
  • Millo, D., Pandelia, M.E., Utesch, T., Wisitruangsakul, N., Mroginski, M.A., Lubitz, W., Hildebrandt, P., Zebger, I., Spectroelectrochemical study of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F in solution and immobilized on biocompatible gold surfaces (2009) J. Phys. Chem. B, 113, pp. 15344-15351
  • Rüdiger, O., Abad, J.M., Hatchikian, E.C., Fernandez, V.M., De Lacey, A.L., Oriented immobilization of Desulfovibrio gigas hydrogenase onto carbon electrodes by covalent bonds for nonmediated oxidation of H 2 (2005) J. Am. Chem. Soc., 127, pp. 16008-16009
  • Raut, V.P., Agashe, M.A., Stuart, S.J., Latour, R.A., Molecular dynamics simulations of peptide-surface interactions (2005) Langmuir, 21, pp. 1629-1639
  • Utesch, T., Daminelli, G., Mroginski, M.A., Molecular dynamics simulations of the adsorption of bone morphogenetic protein-2 on surfaces with medical relevance (2011) Langmuir, 27, pp. 13144-13153
  • Utesch, T., Sezer, M., Weidinger, I.M., Mroginski, M.A., Adsorption of sulfite oxidase on self-assembled monolayers from molecular dynamics simulations (2012) Langmuir, 28, pp. 5761-5769
  • Wang, Q., Zhao, C., Zhao, J., Wang, J., Yang, J.C., Yu, X., Zheng, J., Comparative molecular dynamics study of Aβ adsorption on the self-assembled monolayers (2009) Langmuir, 26, pp. 3308-3316
  • Zhou, J., Zheng, J., Jiang, S., Molecular simulation studies of the orientation and conformation of cytochrome c adsorbed on self-assembled monolayers (2004) J. Phys. Chem. B, 108, pp. 17418-17424
  • Wei, T., Carignano, M.A., Szleifer, I., Lysozyme adsorption on polyethylene surfaces: Why are long simulations needed? (2011) Langmuir, 27, pp. 12074-12081
  • Zuo, G., Zhou, X., Huang, Q., Fang, H., Zhou, R., Adsorption of villin headpiece onto graphene, carbon nanotube, and C60: Effect of contacting surface curvatures on binding affinity (2011) J. Phys. Chem. C, 115, pp. 23323-23328
  • Degefa, T.H., Schön, P., Bongard, D., Walder, L., Elucidation of the electron transfer mechanism of marker ions at SAMs with charged head groups (2004) J. Electroanal. Chem., 574, pp. 49-62
  • Rippers, Y., Utesch, T., Hildebrandt, P., Zebger, I., Mroginski, M.A., Insights into the structure of the active site of the O 2 -tolerant membrane bound [NiFe] hydrogenase of R. eutropha H16 by molecular modelling (2011) Phys. Chem. Chem. Phys., 13, pp. 16146-16149
  • Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M., CHARMM: A program for macromolecular energy, minimization, and dynamics calculations (1983) J. Comput. Chem., 4, pp. 187-217
  • Olsson, M.H.M., Sondergaard, C.R., Rostkowski, M., Jensen, J.H., PROPKA3: Consistent treatment of internal and surface residues in empirical p K a predictions (2011) J. Chem. Theory Comput., 7, pp. 525-537
  • Li, H., Robertson, A.D., Jensen, J.H., Very fast empirical prediction and rationalization of protein p K a values (2005) Proteins, 61, pp. 704-721
  • Teixeira, V.H., Baptista, A.M., Soares, C.M., Pathways of H 2 toward the active site of [NiFe]-hydrogenase (2006) Biophys. J., 91, pp. 2035-2045
  • Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., Skiff, W.M., UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations (1992) J. Am. Chem. Soc., 114, pp. 10024-10035
  • Widrig, C.A., Alves, C.A., Porter, M.D., Scanning tunneling microscopy of ethanethiolate and N -octadecanethiolate monolayers spontaneously absorbed at gold surfaces (1991) J. Am. Chem. Soc., 113, pp. 2805-2810
  • Bizzarri, A.R., Costantini, G., Cannistraro, S., MD simulation of a plastocyanin mutant adsorbed onto a gold surface (2003) Biophys. Chem., 106, pp. 111-123
  • Feller, S.E., Gawrisch, K., MacKerell, A.D., Polyunsaturated fatty acids in lipid bilayers: Intrinsic and environmental contributions to their unique physical properties (2001) J. Am. Chem. Soc., 124, pp. 318-326
  • Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E., Chipot, C., Schulten, K., Scalable molecular dynamics with NAMD (2005) J.Comput. Chem., 26, pp. 1781-1802
  • Mackerell Jr., A.D., Bashford, D., Bellott, M., Dunbrack Jr., R.L., Evanseck, J.D., Field, M.J., Fischer, S., Karplus, M., All-atom empirical potential for molecular modeling and dynamics studies of proteins (1998) J. Phys. Chem. B, 102, pp. 3586-3616
  • Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., Klein, M.L., Comparison of simple potential functions for simulating liquid water (1983) J. Chem. Phys., 79, pp. 926-935
  • Humphrey, W., Dalke, A., Schulten, K., VMD: Visual molecular dynamics (1996) J. Mol. Graphics, 14, pp. 33-38
  • Van Gunsteren, W.F., Berendsen, H.J.C., Algorithms for macromolecular dynamics and constraint dynamics (1977) Mol. Phys., 34, pp. 1311-1327
  • Darden, T., York, D., Pedersen, L., Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems (1993) J. Chem. Phys., 98, pp. 10089-10092
  • Kastenholz, M.A., Hünenberger, P.H., Influence of artificial periodicity and ionic strength in molecular dynamics simulations of charged biomolecules employing lattice-sum methods (2003) J. Phys. Chem. B, 108, pp. 774-788
  • Soliman, W., Bhattacharjee, S., Kaur, K., Adsorption of an antimicrobial peptide on self-assembled monolayers by molecular dynamics simulation (2010) J. Phys. Chem. B, 114, pp. 11292-11302
  • Osawa, M., Surface-enhanced infrared absorption (2001) Top. Appl. Phys., 81, pp. 163-187
  • Marr, A.C., Spencer, D.J.E., Schröder, M., Structural mimics for the active site of [NiFe] hydrogenase (2001) Coord. Chem. Rev., 219-221, pp. 1055-1074

Citas:

---------- APA ----------
Utesch, T., Millo, D., Castro, M.A., Hildebrandt, P., Zebger, I. & Mroginski, M.A. (2013) . Effect of the protonation degree of a self-assembled monolayer on the immobilization dynamics of a [NiFe] hydrogenase. Langmuir, 29(2), 673-682.
http://dx.doi.org/10.1021/la303635q
---------- CHICAGO ----------
Utesch, T., Millo, D., Castro, M.A., Hildebrandt, P., Zebger, I., Mroginski, M.A. "Effect of the protonation degree of a self-assembled monolayer on the immobilization dynamics of a [NiFe] hydrogenase" . Langmuir 29, no. 2 (2013) : 673-682.
http://dx.doi.org/10.1021/la303635q
---------- MLA ----------
Utesch, T., Millo, D., Castro, M.A., Hildebrandt, P., Zebger, I., Mroginski, M.A. "Effect of the protonation degree of a self-assembled monolayer on the immobilization dynamics of a [NiFe] hydrogenase" . Langmuir, vol. 29, no. 2, 2013, pp. 673-682.
http://dx.doi.org/10.1021/la303635q
---------- VANCOUVER ----------
Utesch, T., Millo, D., Castro, M.A., Hildebrandt, P., Zebger, I., Mroginski, M.A. Effect of the protonation degree of a self-assembled monolayer on the immobilization dynamics of a [NiFe] hydrogenase. Langmuir. 2013;29(2):673-682.
http://dx.doi.org/10.1021/la303635q