Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Magnetorheological elastomers, MREs, based on elastic organic matrices displaying anisotropic magnetoresistance and piezoresistivity at room temperature were prepared and characterized. These materials are dispersions of superparamagnetic magnetite forming cores of aggregated nanoparticles inside silver microparticles that are dispersed in an elastomeric polymer (poly(dimethylsiloxane), PDMS), curing the polymer in the presence of a uniform magnetic field. In this way, the elastic material becomes structured as the application of the field induces the formation of filaments of silver-covered inorganic material agglomerates (needles) aligned in the direction of the field (parallel to the field). Because the magnetic particles are covered with silver, the MREs are not only magnetic but also electrical conductors. The structuration induces elastic, magnetic, and electrical anisotropic properties. For example, with a low concentration of particles in the elastic matrix (5% w/w) it is possible to obtain resistances of a few ohms when measured parallel to the needles or several megaohms in the perpendicular direction. Magnetite nanoparticles (Fe 3O 4 NP) were synthesized by the coprecipitation method, and then agglomerations of these NPs were covered with Ag. The average size of the obtained magnetite NPs was about 13 nm, and the magnetite-silver particles, referred to as Fe 3O 4@Ag, form micrometric aggregates (1.3 μm). Nanoparticles, microparticles, and the MREs were characterized by XRD, TEM, SEM, EDS, diffuse reflectance, voltammetry, VSM, and SQUID. At room temperature, the synthesized magnetite and Fe 3O 4@Ag particles are in a superparamagnetic state (T B = 205 and 179 K at 0.01 T as determined by SQUID). The elastic properties and Young's modulus of the MREs were measured as a function of the orientation using a texture analysis device. The magnetic anisotropy in the MRE composite was investigated by FMR. The electrical conductivity of the MRE (σ) increases exponentially when a pressure, P, is applied, and the magnitude of the change strongly depends on what direction P is exerted (anisotropic piezoresistivity). In addition, at a fixed pressure, σ increases exponentially in the presence of an external magnetic field (H) only when the field H is applied in the collinear direction with respect to the electrical flux, J. Excellent fits of the experimental data σ versus H and P were achieved using a model that considers the intergrain electron transport where an H-dependent barrier was considered in addition to the intrinsic intergrain resistance in a percolation process. The H-dependent barrier decreases with the applied field, which is attributed to the increasing match of spin-polarization in the silver covers between grains. The effect is anisotropic (i.e., the sensitivity of the magnetoresistive effect is dependent on the relative orientation between H and the current flow J). In the case of Fe 3O 4@ Ag, when H and J are parallel to the needles in the PDMS matrix, we obtain changes in σ up to 50% for fields of 400 mT and with resistances on the order of 1-10 Ω. Magnetoresistive and magnetoelastic properties make these materials very interesting for applications in flexible electronics, electronic skins, anisotropic pressure, and magnetic field sensors. © 2012 American Chemical Society.

Registro:

Documento: Artículo
Título:Anisotropic magnetoresistance and piezoresistivity in structured Fe 3O 4-silver particles in PDMS elastomers at room temperature
Autor:Mietta, J.L.; Ruiz, M.M.; Antonel, P.S.; Perez, O.E.; Butera, A.; Jorge, G.; Negri, R.M.
Filiación:Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE), Departamento de Química Inorgánica, Analítica y Química Física, Argentina
Departamento de Industrias, Argentina
Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Argentina
Instituto Balseiro, Universidad Nacional de Cuyo, Bariloche, Río Negro, Argentina
Palabras clave:Ag particles; Anisotropic magnetoresistance; Anisotropic pressure; Anisotropic property; Applied field; Average size; Coprecipitation method; Current flows; Diffuse reflectance; Elastic materials; Elastic matrix; Elastic properties; Elastomeric polymer; Electrical conductivity; Electrical conductors; Electron transport; Electronic skin; Experimental data; External magnetic field; Inorganic materials; Inter-grain; Low concentrations; Magnetic field sensors; Magnetic particle; Magneto-resistive effect; Magneto-rheological elastomers; Magnetoelastic properties; Magnetoresistive; Micro-particles; Organic matrix; PDMS elastomer; Percolation process; Piezoresistivity; Relative orientation; Room temperature; Silver particles; Structuration; Superparamagnetic state; Superparamagnetics; Texture analysis; XRD , TEM; Young's Modulus; Agglomeration; Aggregates; Anisotropy; Dispersions; Elasticity; Elastomers; Electric conductivity; Electric resistance; Magnetic fields; Magnetite; Magnetite nanoparticles; Magnetoelectronics; Magnetoresistance; Materials properties; Microchannels; Nanoparticles; Needles; Shellfish; Superparamagnetism; Silver
Año:2012
Volumen:28
Número:17
Página de inicio:6985
Página de fin:6996
DOI: http://dx.doi.org/10.1021/la204823k
Título revista:Langmuir
Título revista abreviado:Langmuir
ISSN:07437463
CODEN:LANGD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v28_n17_p6985_Mietta

Referencias:

  • Wettels, N., Santos, V.J., Johansson, R.S., Loeb, G.E., (2008) Adv. Rob., 22, pp. 829-849
  • Katragadda, R.B., Xu, Y., (2008) Sens. Actuators, A, 143, pp. 169-174
  • Yang, Y.-J., Cheng, M.-Y., Chang, W.-Y., Tsao, L.-C., Yang, S.-A., Shih, W.-P., Chang, F.-Y., Fan, K.-C., (2008) Sens. Actuators, A, 143, pp. 143-153
  • Mannsfeld, S.C.B., Tee, B.C.-K., Stoltenberg, R.M., Chen, C.V.H.-H., Barman, S., Muir, B.V.O., Sokolov, A.N., Bao, Z., (2010) Nat. Mater., 9, pp. 859-864
  • Takei, K., Takahashi, T., Ho, J.C., Ko, H., Gillies, A.G., Leu, P.W., Fearing, R.S., Javey, A., (2010) Nat. Mater., 9, pp. 821-826
  • Sundar, V.C., Zaumseil, J., Podzorov, V., Menard, E., Willett, R.L., Someya, T., Gershenson, M.E., Rogers, J.A., (2004) Science, 303, pp. 1644-1646
  • Promislow, J.H.E., Gast, A.P., (1996) Langmuir, 12, pp. 4095-4102
  • Climent, E., Maxey, M.R., Karniadakis . G, E., (2004) Langmuir, 20, pp. 507-513
  • López-López, M.T., Gomez-Ramirez, A., Duran, J.D.G., Gonzalez-Caballero, F., (2008) Langmuir, 24, pp. 7076-7084
  • Wang, J., Scampicchio, M., Laocharoensuk, R., Valentini, F., González- García, O., Burdick, J., (2006) J. Am. Chem. Soc., 128, pp. 4562-4563
  • Mefford, O.T., Carroll, M.R.J., Vadala, M.L., Goff, J.D., Mejia-Ariza, R., Saunders, M., Pierre, T.G., Riffle, J.S., (2008) Chem. Mater., 20, p. 2184
  • Lappas, A., Zorko, A., Wortham, E., Das, R.N., Giannelis, E.P., Cevc, P., Arc, D., (2005) Chem. Mater., 17, p. 1199
  • Filipcsei, G., Csetneki, I., Szilágyi, A., Zrínyi, M., (2007) Adv. Polym. Sci., 206, pp. 137-189
  • Varga, Z., Filipcsei, G., Zrínyi, M., (2005) Polymer, 46, pp. 7779-7787
  • Varga, Z., Filipcsei, G., Zrínyi, M., (2006) Polymer, 47, pp. 227-233
  • Farshad, M., Benine, A., (2004) Polym. Test., 23, pp. 347-353
  • Denver, H., Heiman, T., Martin, E., Gupta, A., Borca-Tasciuc, D.-A., (2009) J. Appl. Phys., 106, p. 064909
  • Jacobo, S.E., Aphesteguy, J.C., Lopez Antón, R., Schegoleva, N.N., Kurlyandskaya, G.V., (2007) Eur. Polym. J., 43, pp. 1333-1346
  • Kchit, N., Bossis, G., (2008) J. Phys.: Condens. Matter., 20, p. 204136
  • Lanotte, L., Ausanio, G., Hison, C., Iannotti, V., Luponio, C., (2003) Sens. Actuators, A, 106, pp. 56-60
  • Keshoju, K., Sun, L., (2009) J. Appl. Phys., 105, p. 023515
  • Record, P., Popov, C., Fletcher, J., Abraham, E., Huang, Z., Whatmore, R., (2007) Sens. Actuators, B, 126, pp. 344-349
  • Antonel, P.S., Jorge, G., Perez, O.E., Butera, A., Leyva, A.G., Negri, R.M., (2011) J. Appl. Phys., 110, p. 043920
  • Ambrosetti, G., Johner, N., Grimaldi, C., Maeder, T., Ryser, P., Danani, A., (2009) J. Appl. Phys., 106, p. 016103
  • Johner, N., Grimaldi, C., Maeder, T., Ryser, P., (2009) Phys. Rev. e, 79, p. 020104
  • Negri, R.M., Rodriguez, S.D., Bernik, D.L., Molina, F.V., Pilosof, A., Pérez, O., (2010) J. Appl. Phys., 107, p. 113703
  • Wan, C., Zhang, X., Gao, X., Wang, J., Tan, X., (2011) Nature, 477, pp. 304-307
  • Ziese, M., Blythe, H.J., (2000) J. Phys.: Condens. Matter., 12, p. 13
  • Coey, J.M.D., Berkowitz, A.E., Balcells, Ll., Putris, F.F., Parker, F.T., (1998) Appl. Phys. Lett., 72, pp. 734-736
  • Senapati, K., Blamire, M.G., Barber, Z.H., (2011) Nat. Mater., 10, pp. 849-852
  • Lua, Z.L., Xu, M.X., (2007) Appl. Phys. Lett., 91, p. 102508
  • Garza-Navarro, M., Torres-Castro, A., González, V., Ortiz, U., De La Rosa, E., (2010) J. Solid State Chem., 183, pp. 99-104
  • Mandal, M., Kundu, S., Ghosh, S.K., Panigrahi, S., Sau, T.K., Yusuf, S.M., Pal, T., (2005) J. Colloid Interface Sci., 286, pp. 187-194
  • Iglesias-Silva, E., Rivas, J., Isidro, L.M.L., Lopez-Quintela, M.A., (2007) J. Non-Cryst. Solids., 353, pp. 829-831
  • Yin, Y., Li, Z.-Y., Zhong, Z., Gates, B., Xia, Y., Venkateswaranc, S., (2002) J. Mater. Chem., 12, pp. 522-527
  • Yaryura, P., Cordon, G., Leon, M., Kerber, N., Pucheu, N., Rubio, G., García, A., Lagorio, M.G., (2009) J. Agron. Crop Sci., 195, pp. 186-196
  • Knobel, M., Nunes, W.C., Socolovsky, L.M., De Biasi, E., Vargas, J.M., Denardin, J.C., (2008) J. Nanosci. Nanotechnol., 8, pp. 2836-2857
  • Wang, L., Luo, J., Maye, M.M., Fan, Q., Rendeng, Q., Engelhard, M.H., Wang, C., Zhong, C.J., (2005) J. Mater. Chem., 15, pp. 1821-1832
  • Butera, A., (2006) Eur. Phys. J. B, 52, pp. 297-303
  • Goya, G.F., Berquo, T.S., Fonseca, F.C., Morales, M.P., (2003) J. Appl. Phys., 94, p. 3520
  • Carmona, F., Canet, R., Delhaes, P., (1987) J. Appl. Phys., 61, p. 2550
  • Lee, D.-W., Choi, Y.-S., (2008) Microelectron. Eng., 85, pp. 1054-1058
  • Inglis, D.W., (2010) Biomicrofluidics, 4, p. 026504
  • Tong, J., Simmons, C.A., Yu, S.J., (2008) Micromech. Microeng., 18, p. 037004
  • Cheng, Q., Sun, Z., Meininger, G.A., Almasri, M., (2010) Rev. Sci. Instrum., 81, p. 106104
  • Coquelle, E., Bossis, G., Szabo, D., Giulieri, F., (2006) J. Mater. Sci., 41, pp. 5941-5953
  • Smallwood, H.M., (1944) J. Appl. Phys., 15, p. 758
  • Guth, E., (1945) J. Appl. Phys., 16, p. 20
  • Lu, X., Qiao, X., Watanabe, H., Gong, X., Yang, T., Li, W., Sun, K., Che, X., (2012) Rheol. Acta, 51, pp. 37-50
  • Chicota, D., Mendoza, J., Zaouia, A., Louisa, G., Lepinglea, V., Roudeta, F., Lesagea, (2011) J. Mater. Chem. Phys., 129, pp. 862-870
  • Gercek, H., (2007) Int. J. Rock Mech. Miner. Sci., 44, p. 1
  • Gerward, L., Staun Olsen, J., (1995) Appl. Radiat. Isot., 46, p. 553
  • Halpin, J.C., Kardos, J.L., (1976) Polym. Eng. Sci., 16, p. 344
  • Wu, Y.-P., Jia, Q.-X., Yu, D.-S., Zhang, L.-Q., (2004) Polym. Test., 23, pp. 903-909
  • Tandon, G.P., Weng, G., (1984) J. Polym. Compos., 5, pp. 327-333
  • Hui, C.Y., Shia, D., (1998) Polym. Eng. Sci., 38, pp. 774-782
  • Fornes, T.D., Paul, D.R., (2003) Polymer, 44, pp. 4993-5013
  • Ziese, M., Bollero, A., Panagiotopoulos, I., Moutis, N., (2005) Phys. Rev. B, 72, p. 024453
  • Lee, S., Wang, H.Y., Shraiman, B.I., Ratcliff D II, W., Cheong, S.W., (1999) Phys. Rev. Lett., 82, pp. 4508-4511
  • Allia, P., Bretcanu, O., Vernè, E., Celegato, F., Coisson, M., Tiberto, P., Vinai, F., Tamisari, M., (2009) J. Appl. Phys., 105, p. 083911
  • Hu, X., Xu, M., Cui, X., Shang, S., (2007) Solid State Commun., 142, pp. 595-599
  • Hsu, J.-H., Chen, S.-Y., (2002) J. Magn. Magn. Mater., 242-245, pp. 479-481
  • Johnson, M., (1991) Phys. Rev. Lett., 67, p. 3594
  • Hsu, J.-H., Chen, S.-Y., Chang, W.-M., Jian, T.S., Chang, C.-R., (2003) J. Appl. Phys., 93, p. 7702
  • Kimishima, Y., Yamada, W., Uehara, M., Asaka, T., Kimoto, K., Matui, Y., (2007) Mater. Sci. Eng., B, 138, pp. 69-73
  • Bica, I., (2010) J. Ind. Eng. Chem., 16, pp. 359-363

Citas:

---------- APA ----------
Mietta, J.L., Ruiz, M.M., Antonel, P.S., Perez, O.E., Butera, A., Jorge, G. & Negri, R.M. (2012) . Anisotropic magnetoresistance and piezoresistivity in structured Fe 3O 4-silver particles in PDMS elastomers at room temperature. Langmuir, 28(17), 6985-6996.
http://dx.doi.org/10.1021/la204823k
---------- CHICAGO ----------
Mietta, J.L., Ruiz, M.M., Antonel, P.S., Perez, O.E., Butera, A., Jorge, G., et al. "Anisotropic magnetoresistance and piezoresistivity in structured Fe 3O 4-silver particles in PDMS elastomers at room temperature" . Langmuir 28, no. 17 (2012) : 6985-6996.
http://dx.doi.org/10.1021/la204823k
---------- MLA ----------
Mietta, J.L., Ruiz, M.M., Antonel, P.S., Perez, O.E., Butera, A., Jorge, G., et al. "Anisotropic magnetoresistance and piezoresistivity in structured Fe 3O 4-silver particles in PDMS elastomers at room temperature" . Langmuir, vol. 28, no. 17, 2012, pp. 6985-6996.
http://dx.doi.org/10.1021/la204823k
---------- VANCOUVER ----------
Mietta, J.L., Ruiz, M.M., Antonel, P.S., Perez, O.E., Butera, A., Jorge, G., et al. Anisotropic magnetoresistance and piezoresistivity in structured Fe 3O 4-silver particles in PDMS elastomers at room temperature. Langmuir. 2012;28(17):6985-6996.
http://dx.doi.org/10.1021/la204823k