Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The exploration of TiO2 surface reactivity from first-principles calculations has been almost always limited to the gas phase, even though most of the chemically relevant applications of this interface involve the solid-liquid boundary. The reason for this limitation is the complexity of the solid-liquid interface, which poses a serious challenge to standard ab initio methodologies as density functional theory (DFT). In this work we study the interaction of H2O, CH3OH, H2O2, and HCO2H with anatase (101) and rutile (110) surfaces in aqueous solution, employing a continuum solvation model in a DFT framework in periodic boundary conditions [J. Chem. Phys. 2009, 131, 174108 ]. Different adsorption configurations were analyzed, examining the effect of the first water monolayer explicitly included in the simulation. For water and methanol, molecular adsorption was found to be the most stable in the presence of the solvent, while for hydrogen peroxide the preferred configuration depended on the surface. The explicit inclusion of the first water monolayer turns out to be important since it may play a role in the stabilization of the adsorbates at the interface. In general, the slightly positive adsorption energy values obtained (with respect to water) suggest that CH3OH and H2O2 will poorly adsorb from an aqueous solution at the titania surface. Among the three species investigated other than water, the formic acid was the only one to exhibit a higher affinity for the surface than H2O. © 2011 American Chemical Society.

Registro:

Documento: Artículo
Título:Adsorption of R-OH molecules on TiO2 surfaces at the solid-liquid interface
Autor:Sánchez, V.M.; De La Llave, E.; Scherlis, D.A.
Filiación:Departamento de Quimica Inorganica, Analitica y Quimica Fisica-INQUIMAE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires (C1428EHA), Argentina
Palabras clave:Ab initio methodology; Adsorption energies; Aqueous solutions; Continuum solvation models; First-principles calculation; Gasphase; Molecular adsorption; Periodic boundary conditions; Solid-liquid boundary; Solid-liquid interfaces; Surface reactivity; TiO; Titania surfaces; Water monolayers; Adsorption; Calculations; Density functional theory; Formic acid; Hydrogen peroxide; Methanol; Monolayers; Oxide minerals; Reaction kinetics; Solutions; Titanium dioxide; Phase interfaces; formic acid; formic acid derivative; hydrogen peroxide; methanol; titanium; titanium dioxide; water; adsorption; article; chemistry; particle size; quantum theory; surface property; Adsorption; Formates; Hydrogen Peroxide; Methanol; Particle Size; Quantum Theory; Surface Properties; Titanium; Water
Año:2011
Volumen:27
Número:6
Página de inicio:2411
Página de fin:2419
DOI: http://dx.doi.org/10.1021/la103511c
Título revista:Langmuir
Título revista abreviado:Langmuir
ISSN:07437463
CODEN:LANGD
CAS:formic acid, 64-18-6, 71-47-6; hydrogen peroxide, 7722-84-1; methanol, 67-56-1; titanium, 7440-32-6; titanium dioxide, 1317-70-0, 1317-80-2, 13463-67-7, 51745-87-0; water, 7732-18-5; Formates; Hydrogen Peroxide, BBX060AN9V; Methanol, Y4S76JWI15; Titanium, D1JT611TNE; Water, 059QF0KO0R; formic acid, 64-18-6; titanium dioxide, 15FIX9V2JP
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v27_n6_p2411_Sanchez

Referencias:

  • Diebold, U., (2003) Surf. Sci. Rep., 48, p. 53
  • O'Regan, B., Grätzel, M., (1991) Nature, 353, p. 737
  • Jones, F.H., (2001) Surf. Sci. Rep., 42, p. 75
  • Mills, A., Davies, H.R., Worsley, D., (1993) Chem. Soc. Rev., 22, p. 417
  • Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., (1995) Chem. Rev., 95, p. 69
  • Linsebigler, A.L., Lu, G., Yates Jr., J.T., (1995) Chem. Rev., 95, p. 735
  • Henderson, M.A., Otero-Tapia, S., Castro, M.E., (1999) Faraday Discuss., 114, p. 313
  • Wang, C.-Y., Groenzin, H., Shultz, M.J., (2004) J. Am. Chem. Soc., 126, p. 8094
  • Wang, C.-Y., Groenzin, H., Shultz, M.J., (2005) J. Am. Chem. Soc., 127, p. 9736
  • Zhang, Z., Bondarchuk, O., White, J.M., Kay, B.D., Dohnalek, Z., (2006) J. Am. Chem. Soc., 128, pp. 4198-4199
  • Panayotov, D.A., Burrows, S., Mihaylov, M., Hadjiivanov, K., Tissue, B.M., Morris, J.R., (2010) Langmuir, 26, p. 81068112
  • Patthey, L., Rensmo, H., Persson, P., Westermark, K., Vayssieres, L., Stashans, A., Petersson, Á., Mårtensson, N., (1999) J. Chem. Phys., 110, pp. 5913-5918
  • Bruch, L.W., Diehl, R.D., Venables, J.A., (2007) Rev. Mod. Phys., 79, p. 1381
  • Nilsson, A., Pettersson, L.G.M., (2004) Surf. Sci. Rep, 55, p. 49
  • Mo, S.-D., Ching, W.Y., (1995) Phys. Rev. B, 51, p. 13023
  • Vittadini, A., Casarin, M., Selloni, A., (2007) Theor. Chem. Acc., 117, p. 663
  • Tilocca, A., Selloni, A., (2004) J. Phys. Chem. B, 108, p. 4743
  • Tilocca, A., Selloni, A., (2004) Langmuir, 20, p. 8379
  • Vittadini, A., Selloni, A., Rotzinger, F.P., Grätzel, M., (1998) Phys. Rev. Lett., 81, p. 2954
  • Tilocca, A., Selloni, A., (2004) J. Phys. Chem. B, 108, p. 19314
  • Mattioli, G., Filippone, F., Caminiti, R., Bonapasta, A.A., (2008) J. Chem. Phys. C, 112, p. 13579
  • Vittadini, A., Selloni, A., Rotzinger, F., Gratzel, M., (2000) J. Phys. Chem. B, 104, p. 1300
  • Harris, L.A., Quong, A.A., (2004) Phys. Rev. Lett., 93, p. 086105
  • Bates, S.P., Kresse, G., Gillan, M.J., (1998) Surf. Sci., 409, p. 336
  • Lindan, P.J.D., Zhang, C., (2005) Phys. Rev. B, 72, p. 075439
  • Oviedo, J., Sánchez De Armas, R., San Miguel, M.A., Sanz, J.F., (2008) J. Phys. Chem C, 112, p. 17737
  • Pang, C.L., Lindsay, R., Thornton, G., (2008) Chem. Soc. Rev., 37, p. 2328
  • Sánchez, V.M., Cojulun, J.A., Scherlis, D.A., (2010) J. Phys. Chem. C, 114, p. 11522
  • Zhang, C., Lindan, P.J.D., (2003) J. Chem. Phys., 119, p. 9183
  • Herman, G.S., Dohnálek, Z., Ruzycki, N., Diebold, U., (2003) J. Phys. Chem. B, 107, p. 2788
  • Kowalski, P.M., Meyer, B., Marx, D., (2009) Phys. Rev. B, 79, p. 115410
  • Hugenschmidt, M.B., Gamble, L., Campbell, C.T., (1994) Surf. Sci., 302, p. 329
  • Henderson, M.A., (1996) Surf. Sci., 355, p. 151
  • Henderson, M.A., (1996) Langmuir, 12, p. 5093
  • Henderson, M.A., (1998) Surf. Sci., 400, p. 203
  • Bates, S.P., Gillan, M.J., Kresse, G., (1998) J. Phys. Chem. B, 102, p. 2017
  • Sánchez De Armas, R., Oviedo, J., San Miguel, M.A., Sanz, J.F., (2007) J. Phys Chem. C, 111, p. 10023
  • Salmeron, M., Schlögl, R., (2008) Surf. Sci. Rep., 63, p. 169
  • Köppen, S., Langel, W., (2008) Phys. Chem. Chem. Phys., 10, p. 1907
  • Cheng, J., Sprik, M., (2010) J. Chem. Theory Comput., 6, p. 880
  • Cheng, J., Sprik, M., (2010) Phys. Rev. B., 82, pp. 81406R
  • Cheng, H., Selloni, A., (2010) Langmuir, 26, p. 11518
  • Cramer, C.J., Truhlar, D.G., (1999) Chem. Rev., 99, p. 2161
  • Levine, I.N., (2000) Quantum Chemistry, , Prentice Hall: NJ
  • Schlick, T., (2002) Molecular Modeling and Simulation, , Springer-Verlag: New York
  • Tomasi, J., Mennucci, B., Cammi, R., (2005) Chem. Rev., 105, p. 2999
  • Li, Y.-F., Liu, Z.P., Liu, L., Gao, W., (2010) J. Am. Chem. Soc., 132, p. 13008
  • Sánchez, V.M., Sued, M., Scherlis, D.A., (2009) J. Chem. Phys., 131, p. 174108
  • Giannozzi, P., (2009) J. Phys.: Condens. Matter, 21, p. 395502. , http://www.quantum-espresso.org/
  • Perdew, J.P., Wang, Y., (1992) Phys. Rev. B, 45, p. 13244
  • Perdew, J.P., (1992) Phys. Rev. B, 46, p. 6671
  • Vanderbilt, D., (1990) Phys. Rev. B, 41, p. 7892
  • Scherlis, D.A., Fattebert, J.-L., Gygi, F., Cococcioni, M., Marzari, N., (2006) J. Chem. Phys., 124, p. 074103
  • Fattebert, J.-L., Gygi, F., (2003) Int. J. Quantum Chem., 93, p. 139
  • Badyal, Y.S., Saboungi, M.-L., Price, D.L., Shastri, S.D., Haeffner, D.R., Soper, A.K., (2000) J. Chem. Phys., 112, p. 9206
  • Gubskaya, A.V., Kusalika, P.G., (2002) J. Chem. Phys., 117, p. 5290
  • From now on, we denote O(2c) to the bicoordinated bridging oxygen atom on the surface, and Ti(5c) to the 5-fold coordinated titanium atom; Tilocca, A., Selloni, A., (2003) J. Chem. Phys., 119, p. 7445
  • note; Wander, M.C.F., Clark, A.E., (2008) J. Phys. Chem. C, 112, p. 19986
  • In doing this, we are assuming the molar entropy of the pure liquid X does not differ from the molar entropy of X in an aqueous solution; The representation of explicit solvation in the case of rutile for bidentate species would have requested the expansion of the supercell, because the adopted (110) surface model exposes only two Ti(5c) sites; Regazzoni, A.E., Mandelbaum, P., Matsuyoshi, M., Schiller, S., Bilmes, S., Blesa, M.A., (1998) Langmuir, 14, p. 868
  • Kosmulski, M., (2002) J. Colloid Interface Sci., 253, p. 77
  • Brinker, C.J., Scherrer, G.W., (1990) Sol-Gel Science, the Physics and Chemistry of Sol-Gel Processing, , Academic Press: San Diego, CA
  • Pedota, M., Bandura, A.V., Cummings, P.T., Kubicki, J.D., Wesolowski, D.J., Chialvo, A.A., MacHesky, M.L., (2004) J. Phys. Chem. B, 108, p. 12049
  • Dickinson, A., James, D., Perkins, N., Cassidy, T., Bowker, M., (1999) J. Mol. Catal. A: Chem., 146, p. 211
  • Rotzinger, F.P., Kesselman-Truttmann, J.M., Hug, S.J., Shklover, V., Grätzel, M., (2004) J. Phys. Chem. B, 108, p. 5004

Citas:

---------- APA ----------
Sánchez, V.M., De La Llave, E. & Scherlis, D.A. (2011) . Adsorption of R-OH molecules on TiO2 surfaces at the solid-liquid interface. Langmuir, 27(6), 2411-2419.
http://dx.doi.org/10.1021/la103511c
---------- CHICAGO ----------
Sánchez, V.M., De La Llave, E., Scherlis, D.A. "Adsorption of R-OH molecules on TiO2 surfaces at the solid-liquid interface" . Langmuir 27, no. 6 (2011) : 2411-2419.
http://dx.doi.org/10.1021/la103511c
---------- MLA ----------
Sánchez, V.M., De La Llave, E., Scherlis, D.A. "Adsorption of R-OH molecules on TiO2 surfaces at the solid-liquid interface" . Langmuir, vol. 27, no. 6, 2011, pp. 2411-2419.
http://dx.doi.org/10.1021/la103511c
---------- VANCOUVER ----------
Sánchez, V.M., De La Llave, E., Scherlis, D.A. Adsorption of R-OH molecules on TiO2 surfaces at the solid-liquid interface. Langmuir. 2011;27(6):2411-2419.
http://dx.doi.org/10.1021/la103511c