Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In recent years, self-assembled monolayers (SAMs) of selenols have been characterized using electrochemistry, scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), thermal desorption spectroscopy, and other experimental approaches. Interest in the relative stability and conductance of the Se - Au interface as compared to S-Au prompted different investigations which have led to contradictory results. From the theoretical side, on the other hand, the study of selenol-based SAMs has concentrated on the investigation of the electron transport across the Se-Au contact, whereas the structural and the thermodynamic features of the monolayer were essentially neglected. In this Article, we examine the binding of selenols to the Au(111) surface using density functional theory with plane wave basis sets and periodic boundary conditions. Our calculations provide insights on the geometry of the headgroup, the stability of the monolayer, and the electronic properties of the bond. In particular, we propose that the presence of a conjugated backbone might be a major factor determining the relative conductance at the monolayer, by differentially enhancing the intramolecular electron transport in selenols with respect to thiols. This surmise, if confirmed, would explain the conflictive data coming from the available experiments. © 2009 American Chemical Society.

Registro:

Documento: Artículo
Título:Selenium-based self-assembled monolayers: the nature of adsorbate - surface interactions
Autor:De La Llave, E.; Scherlis, D.A.
Filiación:Departamento de Química Inorgánica, Analítica y Química física/'Inquimae, Pab. II, Buenos Aires C1428EHA, Argentina
Palabras clave:Density functional theory; Electron transport properties; Electronic properties; Organic polymers; Scanning tunneling microscopy; Selenium; Thermal desorption spectroscopy; X ray photoelectron spectroscopy; Conjugated backbones; Electron transport; Experimental approaches; Periodic boundary conditions; Plane-wave basis set; Relative conductance; Relative stabilities; Surface interactions; Self assembled monolayers
Año:2010
Volumen:26
Número:1
Página de inicio:173
Página de fin:178
DOI: http://dx.doi.org/10.1021/la903660y
Título revista:Langmuir
Título revista abreviado:Langmuir
ISSN:07437463
CODEN:LANGD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v26_n1_p173_DeLaLlave

Referencias:

  • Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M., (2005) Chem. Rev, 105, p. 1103
  • Vericat, C., Vela, M.E., Benitez, G.A., Martin Gago, J.A., Torrelles, X., Salvarezza, R.C., (2006) J. Phys.: Condens. Matter, 18, p. 867
  • Seshadri, K., Atre, S.V., Tao, Y.-T., Lee, M.-T., Allara, D.L., (1997) J. Am. Chem. Soc, 119, p. 4698
  • Bernard, M.-C., Chausse, A., Cabet-Deliry, E., Chehimi, M.M., Pinson, J., Podvorica, F., Vautrin-Ul, C., (2003) Chem. Mater, 15, p. 3450
  • Laforgue, A., Addou, T., Belanger, D., (2005) Langmuir, 21, p. 6855
  • de la Llave, E., Ricci, A., Calvo, E.J., Scherlis, D.A., (2008) J. Phys. Chem. C, 112, p. 17611
  • Jiang, D.E., Sumpter, B.G., Dai, S., (2006) J. Am. Chem. Soc, 128, p. 6030
  • Ricci, A., Bonazzola, C., Calvo, E.J., (2006) Phys. Chem. Chem. Phys, 8, p. 4297
  • Allongue, P., Delamar, M., Desbat, B., Fagebaume, O., Hitmi, R., Pinson, J., Saveant, J.-M., (1997) J. Am. Chem. Soc, 119, p. 201
  • Adenier, A., Bernard, M.-C., Chehimi, M.M., Cabet-Deliry, E., Desbat, B., Fagebaume, O., Pinson, J., Podvorica, F., (2001) J. Am. Chem. Soc, 123, p. 4541
  • Strano, M.S., Dyke, C.A., Usrey, M.L., Barone, P.W., Allen, M.J., Shan, H., Kittrell, C., Smalley, R.E., (2003) Science, 301, p. 1519
  • Stewart, M.P., Maya, F., Kosynkin, D.V., Dirk, S.M., Stapleton, J.J., McGuiness, C.L., Allara, D.L., Tour, J.M., (2004) J. Am. Chem. Soc, 126, p. 370
  • Samant, M.G., Brown, C.A., Gordon II, J.G., (1992) Langmuir, 8, p. 1615
  • Dishner, M.H., Hemminger, J.C., Feher, F.J., (1997) Langmuir, 13, p. 4788
  • Huang, F.K., Horton Jr., R.C., Myles, D.C., Garrell, R.L., (1998) Langmuir, 14, p. 4802
  • Nakamura, T., Kimura, R., Matsui, F., Kondoh, H., Ohta, T., Sakai, H., Abe, M., Matsumoto, M., (2000) Langmuir, 16, p. 4213
  • Nakano, K., Sato, T., Tazaki, M., Takagi, M., (2000) Langmuir, 16, p. 2225
  • Monnell, J.D., Stapleton, J.J., Jackiw, J.J., Dunbar, T., Reinerth, W.A., Dirk, S.M., Tour, J.M., Weiss, P.S., (2004) J. Phys. Chem. B, 105, p. 9834
  • Sato, Y., Mizutani, F., (2004) Phys. Chem. Chem. Phys, 6, p. 1328
  • Käfer, D., Bashir, A., Witte, G., (2007) J. Phys. Chem. C, 111, p. 10546
  • Brust, M., Stuhr-Hansen, N., Nørgaard, K., Christensen, J.B., Nielsen, L.K., Bjørnholm, T., (2001) Nano Lett, 1, p. 189
  • Yee, C.K., Ulman, A., Ruiz, J.D., Parikh, A., White, H., Rafailovich, M., (2003) Langmuir, 19, p. 9450
  • Zelakiewicz, B.S., Yonezawa, T., Tong, Y., (2004) J. Am. Chem. Soc, 126, p. 8112
  • Shaporenko, A., Müller, J., Weidner, T., Terfort, A., Zharnikov, M., (2007) J. Am. Chem. Soc, 129, p. 2232
  • Shaporenko, A., Ulman, A., Terfort, A., Zharnikov, M., (2005) J. Phys. Chem. B, 109, p. 3898
  • Yaliraki, S.N., Kemp, M., Ratner, M.A., (1999) J. Am. Chem. Soc, 121, p. 3428
  • Di Ventra, M., Lang, N.D., (2001) Phys. Rev. B, 65, p. 45402
  • Patrone, L., Palacin, S., Charlier, J., Armand, F., Bourgoin, J.P., Tang, H., Gauthier, S., (2003) Phys. Rev. Lett, 91, p. 96802
  • Patrone, L., Palacin, S., Bourgoin, J.P., Lagoute, J., Zambelli, T., Gauthier, S., (2002) Chem. Phys, 281, p. 325
  • Patrone, L., Palacin, S., Bourgoin, J.P., (2003) Appl. Surf. Sci, 212-213, p. 446
  • Yokota, K., Taniguchi, M., Kawai, T., (2007) J. Am. Chem. Soc, 129, p. 5818
  • Monnell, J.D., Stapleton, J.J., Dirk, S.M., Reinerth, W.A., Tour, J.M., Allara, D.L., Weiss, P.S., (2005) J. Phys. Chem. B, 109, p. 20343
  • Engelkes, V.B., Beebe, J.M., Frisbie, C.D., (2004) J. Am. Chem. Soc, 126, p. 14287
  • Standard, J.M., Gregory, B.W., Clark, B.K., (2007) THEOCHEM, 803, p. 103
  • Mankefors, S., Grigoriev, A., Wendin, G., (2003) Nanotechnology, 14, p. 849
  • Hohenberg, P., Kohn, W., (1964) Phys. Rev, 136, p. 864
  • Kohn, W., Sham, L., (1965) Phys. Rev, 140, p. 1133
  • Giannozzi, P., (2009) J. Phys.: Condens. Matter, 21, p. 395502. , http://www.quantum-espresso.org
  • Vanderbilt, D., (1990) Phys. Rev. B, 41, p. 7892
  • Perdew, J.P., Burke, K., Ernzerhof, M., (1996) Phys. Rev. Lett, 77, p. 3865
  • Monkhorst, H., Pack, J., (1976) Phys. Rev. B, 13, p. 5188
  • Methfessel, M., Paxton, T., (1989) Phys. Rev. B, 40, p. 3616
  • The hep and the fcc sites differ in their relative location with respect to the inner structure: the former is above a Au atom of the second layer, whereas the latter lies over a hollow site; Geometry optimizations of SePh and SPh on gold led to upright molecular configurations, with the plane of the benzenes forming an angle close to 80° with respect to the Au surface. On the other hand, data in ref 20 have been assigned via NEXAFS to lying molecules. The reported experimental tilt angles in the denser phases of the SePh and SPh films were 71° and 36°, respectively, and 21° in the diluted phases. These large differences confronting the experimental and the computed tilts can be ascribed to the well-known DFT shortcomings to represent the van der Waals forces operative in between aromatic rings and between these rings and the surface; The choice of an index to measure the derealization degree is not unique: the formula proposed here is just one out of many possible criteria. I(q) seeks the maximum overlap between the initial and final PDOS for all possible shifts in energy ε0. Under this definition, a perturbation that only displaces the center of the PDOS to lower or higher energies, without really affecting its shape, would return I(q) = 1, detecting no delocalization; Hansson, G.V., Flodström, S.A., (1978) Phys. Rev. B, 18, p. 1572
  • Rusu, P.C., Brocks, G., (2006) J. Phys. Chem. B, 110, p. 22628
  • Nagoya, A., Morikawa, Y., (2007) J. Phys.: Condens. Matter, 19, p. 365245
  • Gronbëok, H., Curioni, A., Andreoni, W., (2000) J. Am. Chem. Soc, 122, p. 3839

Citas:

---------- APA ----------
De La Llave, E. & Scherlis, D.A. (2010) . Selenium-based self-assembled monolayers: the nature of adsorbate - surface interactions. Langmuir, 26(1), 173-178.
http://dx.doi.org/10.1021/la903660y
---------- CHICAGO ----------
De La Llave, E., Scherlis, D.A. "Selenium-based self-assembled monolayers: the nature of adsorbate - surface interactions" . Langmuir 26, no. 1 (2010) : 173-178.
http://dx.doi.org/10.1021/la903660y
---------- MLA ----------
De La Llave, E., Scherlis, D.A. "Selenium-based self-assembled monolayers: the nature of adsorbate - surface interactions" . Langmuir, vol. 26, no. 1, 2010, pp. 173-178.
http://dx.doi.org/10.1021/la903660y
---------- VANCOUVER ----------
De La Llave, E., Scherlis, D.A. Selenium-based self-assembled monolayers: the nature of adsorbate - surface interactions. Langmuir. 2010;26(1):173-178.
http://dx.doi.org/10.1021/la903660y