Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The convergence of chemistry, biology, and materials science has paved the way to the emergence of hybrid nanobuilding blocks that incorporate the highly selective recognition properties of biomolecules, with the tailorable functional capabilities of inorganic molecules. In this work, we describe for the first time the decoration of concanavalin A (Con A), a protein with the ability to recognize sugars and form glycoconjugates, with Os(II) redox-active complexes. This strategy enabled the construction of electroactive biosupramolecular materials whose redox potentials could be easily modulated through the facile molecular modification of the electroactive inorganic complexes. Small-angle X-ray scattering (SAXS), steady-state fluorescence, surface plasmon resonance (SPR) spectroscopy, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF-MS), and differential-pulsed (DPV) and cyclic voltammetry (CV) were used to characterize the structural and functional features of the synthesized biohybrid building blocks as well as their respective supramolecular assemblies built up on gold electrodes. By harnessing the electroactive and carbohydrate-recognition properties of these tailor-made biohybrid building blocks, we were able to integrate glucose oxidase (GOx) onto gold electrodes via sugar'lectin interactions. The redox activity of the Os-modified Con A interlayer allowed the electronic connection between the multilayered GOx assemblies and the metal electrode as evidenced by the well-defined bioelectrocatalytic response exhibited by the biomolecular assemblies in the presence of the glucose in solution. We consider that this approach based on the spontaneous formation of redox-active biosupramolecular assemblies driven by recognition processes can be of practical relevance for the facile design of biosensors, as well as for the construction of new multifunctional bioelectrochemical systems. © 2010 American Chemical Society.

Registro:

Documento: Artículo
Título:Redox-active concanavalin a: Synthesis, characterization, and recognition-driven assembly of interfacial architectures for bioelectronic applications
Autor:Pallarola, D.; Queralto, N.; Knoll, W.; Ceoli; Azzaroni, O.; Battaglini, F.
Filiación:Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Universidad Nacional de la Plata, CC 16 Suc. 4, (1900) La Plata, Argentina
Max-Planck-Institut für Polymerforschung, Ackermannweg 10, (55128) Mainz, Germany
Austrian Institute of Technology (AIT), Donau-City-Strasse 1, (1220) Vienna, Austria
INQUIMAE, Departamento de Química InorgÁnica, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina
Palabras clave:Bio-molecular; Bioelectrochemical systems; Bioelectronic applications; Building blockes; Concanavalin A; Electroactive; Functional capabilities; Functional features; Glycoconjugates; Gold electrodes; Inorganic complexes; Inorganic molecules; Interfacial architecture; MALDI TOF MS; Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry; Metal electrodes; Molecular modification; Multi-layered; Nanobuilding blocks; Recognition process; Recognition properties; Redox activity; Redox potentials; Redox-active; Selective recognition; Small angle X-ray scattering; Spontaneous formation; Steady-state fluorescence; Supramolecular assemblies; Surface plasmon resonance spectroscopy; Biosensors; Carbohydrates; Characterization; Complexation; Cyclic voltammetry; Desorption; Electrodes; Functional polymers; Glucose; Glucose oxidase; Glucose sensors; Hybrid materials; Mass spectrometry; Molecular biology; Osmium; Pulsed laser applications; Pulsed lasers; Redox reactions; Sugar (sucrose); Surface plasmon resonance; X ray scattering; Building materials; concanavalin A; nanomaterial; article; chemistry; electrochemistry; mass spectrometry; small angle scattering; surface plasmon resonance; theoretical model; Concanavalin A; Electrochemistry; Models, Theoretical; Nanostructures; Scattering, Small Angle; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Surface Plasmon Resonance
Año:2010
Volumen:26
Número:16
Página de inicio:13684
Página de fin:13696
DOI: http://dx.doi.org/10.1021/la100486g
Título revista:Langmuir
Título revista abreviado:Langmuir
ISSN:07437463
CODEN:LANGD
CAS:concanavalin A, 11028-71-0; Concanavalin A, 11028-71-0
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v26_n16_p13684_Pallarola

Referencias:

  • Mirkin, C.A., Niemeyer, C.M., (2007) Nanobiotechnology II: More Concepts and Applications, , VCH-Wiley: Weinheim
  • Katz, E., Willner, I., Mirkin, C.A., Niemeyer, C.M., (2005) Nanobiotechnology: Concepts, Applications and Perspectives, pp. 200-226. , VCH-Wiley: Weinheim,; Chapter 14
  • Willner, I., (1997) Acc. Chem. Res., 30, pp. 347-356
  • Ziegler, C., Wilson, G.S., (2002) Bioelectrochemistry, pp. 51-66. , Wiley-VCH: Weinheim,; Chapter 2
  • Willner, I., Katz, E., Willner, I., Katz, E., (2005) Bioelectronics: From Theory to Applications, pp. 1-13. , Wiley-VCH: Weinheim,; Chapter 1
  • Di Giusto, D.A., Wlassoff, W.A., Giesebrecht, S., Gooding, J.J., King, G.C., (2004) Angew. Chem., Int. Ed., 43, pp. 2809-2812
  • Radi, A.-E., Sánchez, J.L.A., Baldrich, E., O'Sullivan, C.K., (2006) J. Am. Chem. Soc., 128, pp. 117-124
  • Willner, I., Zayats, M., (2007) Angew. Chem., Int. Ed., 46, pp. 6408-6418
  • Baker, B.R., Lai, R.Y., Wood, M.S., Heeger, A.J., Plaxco, K.W., (2006) J. Am. Chem. Soc., 128, pp. 3138-3139
  • Azzaroni, O., Álvarez, M., Abou-Kandil, A.I., Yameen, B., Knoll, W., (2008) Adv. Funct. Mater., 18, pp. 3487-3496
  • Mir, M., Álvarez, M., Azzaroni, O., Tiefenauer, L., Knoll, (2008) Anal. Chem., 80, pp. 6564-6569
  • Salmain, M., Jaouen, G., (2006) Bioorganometallics, pp. 181-213. , VCH-Wiley: Weinheim,; Chapter 6
  • Kantardjieff, K.A., Höchtl, P., Segelke, B.W., Tao, F.-M., Rupp, B., (2002) Acta Crystallogr., 58, pp. 735-743
  • Deacon, A., Gleichmann, T., Kalb, A.J., Price, H., Raftery, J., Bradbrook, G., Yariv, J., Helliwell, J.R., (1997) J. Chem. Soc., Faraday Trans., 93, pp. 4305-4312
  • Arrondo, J.L.R., Young, N.M., Mantsch, H.H., (1988) Biochim. Biophys. Acta, 952, pp. 261-268
  • Edelman, G.M., Cunningham, B.A., Reeke Jr., G.N., Becker, J.W., Waxdal, M.J., Wang, J.L., (1972) Proc. Natl. Acad. Sci. U.S.A., 69, pp. 2580-2584
  • Hardman, K.D., Agarwal, R.C., Freiser, M.J., (1982) J. Mol. Biol., 157, pp. 69-86
  • Alter, G.M., Pandolfino, E.R., Christie, D.J., Magnuson, J.A., (1977) Biochemistry, 16, pp. 4034-4038
  • Becker, J.W., Reeke Jr., G.N., Cunningham, Edelman, G.M., (1976) Nature, 259, pp. 406-409
  • Kalb, A.J., Levitzki, A., (1968) Biochem. J., 109, pp. 669-672
  • Derewenda, Z., Yariv, J., Helliweii, J.R., Kalb, A.J., Dodson, E.J., Papiz, M.Z., Wan, T., Campbell, J., (1989) EMBO J., 8, pp. 2189-2193
  • Liu, S., Wang, K., Du, D., Sun, Y., He, L., (2007) Biomacromolecules, 8, pp. 2142-2148
  • Dai, Z., Kawde, A.-N., Xiang, Y., La Belle, J.T., Gerlach, J., Bhavanandan, V.P., Joshi, L., Wang, J., (2006) J. Am. Chem. Soc., 128, pp. 10018-10019
  • Ding, L., Cheng, W., Wang, X., Ding, S., Ju, H., (2008) J. Am. Chem. Soc., 130, pp. 7224-7225
  • Sato, K., Kodama, D., Anzai, J.-I., (2006) Anal. Bioanal. Chem., 386, pp. 1899-1904
  • Hoshi, T., Akase, S., Anzai, J.-I., (2002) Langmuir, 18, pp. 7024-7028
  • Shen, Z., Huang, M., Xiao, C., Zhang, Y., Zeng, X., Wang, P.G., (2007) Anal. Chem., 79, pp. 2312-2319
  • Guo, C., Boullanger, P., Jiang, L., Liu, T., (2007) Biosens. Bioelectron., 22, pp. 1830-1834
  • Danilowicz, C., Cortón, E., Battaglini, F., (1998) J. Electroanal. Chem., 445, pp. 89-94
  • Soham, B., Migron, Y., Riklin, A., Willner, I., Tartakovsky, B., (1995) Biosens. Bioelectron., 10, pp. 341-352
  • Padeste, C., Grubelnik, A., Tiefenauer, L., (2003) Biosens. Bioelectron., 19, pp. 239-244
  • Stenberg, E., Persson, B., Roos, H., Urbaniczky, C., (1991) J. Colloid Interface Sci., 143, pp. 513-526
  • Yu, F., (2004), http://mpip-mainz.mpg.de/knoll/publications/thesis/yu_2004.pdf, Ph.D. Thesis, Johannes Gutenberg-Universität, Mainz, Germany; Svergun, D.I., (1992) J. Appl. Crystallogr., 25, pp. 495-503
  • Svergun, D.I., Barberato, C., Koch, M.J.H., (1995) J. Appl. Crystallogr., 28, pp. 768-773
  • Mann, M., Hendrickson, R.C., Pandey, A., (2001) Annu. Rev. Biochem., 70, pp. 437-473
  • Mendoza, L.V., Vachet, R.W., (2009) Mass Spectrom. Rev., 28, pp. 785-815
  • Knoll, W., (1998) Annu. Rev. Phys. Chem., 49, p. 569
  • Smith, E.A., Thomas, W.D., Kiessling, L.L., Corn, R.M., (2003) J. Am. Chem. Soc., 125, pp. 6140-6148
  • Willner, I., Rubin, S., Cohen, Y., (1993) J. Am. Chem. Soc., 115, pp. 4937-4938
  • Anzai, J.-I., Kobayashi, Y., (2000) Langmuir, 16, pp. 2851-2856
  • Mann, D.A., Kanai, M., Maly, D.J., Kiessling, L.L., (1998) J. Am. Chem. Soc., 120, pp. 10575-10582
  • Horan, N., Yan, L., Isobe, H., Whitesides, G.M., Kahne, D., (1999) Proc. Natl. Acad. Sci. U.S.A., 96, pp. 11782-11786
  • Kiessling, L.L., Gestwicki, J.E., Strong, L.E., (2006) Angew. Chem., Int. Ed., 45, pp. 2348-2368
  • Lakowicz, J.R., (1983) Principles of Fluorescence Spectroscopy, , Plenum Press: New York
  • Rao, M.V.R., Atryi, M., Rajeswari, M.R., (1984) J. Biosci., 6, pp. 823-828
  • Pelley, R., Howorwitz, P., (1976) Biochim. Biophys. Acta, 427, pp. 359-363
  • Vachette, P., Svergun, D., Fanchon, E., Geissler, E., Hodeau, J.L., Regnard, J.R., Timmins, P.A., (2000) Structure and Dynamics of Biomolecules: Neutron and Synchrotron Radiation for Condensed Matter Studies, , Oxford University Press: Oxford,; Chapter 11
  • Glatter, O., Kratky, O., (1982) Small-Angle X-Ray Scattering, , Academic Press: New York
  • Rescic, J., Vlachy, V., Jamnik, A., Glatter, O., (2001) J. Colloid Interface Sci., 239, pp. 49-57
  • Mittelbach, R., Glatter, O., (1998) J. Appl. Crystallogr., 31, pp. 600-608
  • Leggio, C., Galantini, L., Pavel, N.V., (2008) Phys. Chem. Chem. Phys., 10, pp. 6741-6750
  • Svergun, D.I., Petoukhov, M.V., Koch, M.H.J., König, S., (2000) J. Biol. Chem., 275, pp. 297-302
  • Putnam, C.D., Hammel, M., Hura, G.L., Tainer, J.A., (2007) Q. Rev. Biophys., 40, pp. 191-285
  • Bailon, P., Berthold, W., (1998) Pharm. Sci. Tech. Today, 1, pp. 352-356
  • Lehner, D., Worning, P., Fritz, G., Øgendal, L., Bauer, R., Glatter, O., (1999) J. Colloid Interface Sci., 213, pp. 445-456
  • Hiemenz, P.C., Rajagopalan, (1997) Principles of Colloid and Surface Chemistry, pp. 193-246. , Marcel Dekker: New York,; Chapter 5
  • Kim, H.I., Kushmerick, G., Houston, J.E., Bunker, B.C., (2003) Langmuir, 19, pp. 9271-9275
  • Smith, C.P., White, H.S., (1993) Langmuir, 9, pp. 1-3
  • Bryant, M.A., Crooks, R.M., (1993) Langmuir, 9, pp. 385-387
  • Azzaroni, O., Mir, M., Álvarez, M., Tiefenauer, L., Knoll, W., (2008) Langmuir, 24, pp. 2878-2883
  • Wang, J., (2000) Analytical Electrochemistry, p. 68. , Wiley-VCH: New York,; Chapter 3
  • Madhiri, N., Finklea, H.O., (2006) Langmuir, 22, pp. 10643-10651
  • Haddox, R.M., Finklea, H.O., (2004) J. Phys. Chem. B, 108, pp. 1694-1700
  • Azzaroni, O., Yameen, B., Knoll, W., (2008) Phys. Chem. Chem. Phys., 10, pp. 7031-7038
  • Rowe, G.K., Creager, S.E., (1991) Langmuir, 7, pp. 2307-2312
  • Saleemuddin, M., Husain, Q., (1991) Enzyme Microb. Technol., 13, pp. 290-295
  • Cassier, T., Lowack, K., Decher, G., (1998) Supramol. Sci., 5, pp. 309-315
  • Lvov, Y., Ariga, K., Ichinise, I., Kunitake, T., (1995) J. Chem. Soc., Chem. Commun., pp. 2313-2315

Citas:

---------- APA ----------
Pallarola, D., Queralto, N., Knoll, W., Ceoli, Azzaroni, O. & Battaglini, F. (2010) . Redox-active concanavalin a: Synthesis, characterization, and recognition-driven assembly of interfacial architectures for bioelectronic applications. Langmuir, 26(16), 13684-13696.
http://dx.doi.org/10.1021/la100486g
---------- CHICAGO ----------
Pallarola, D., Queralto, N., Knoll, W., Ceoli, Azzaroni, O., Battaglini, F. "Redox-active concanavalin a: Synthesis, characterization, and recognition-driven assembly of interfacial architectures for bioelectronic applications" . Langmuir 26, no. 16 (2010) : 13684-13696.
http://dx.doi.org/10.1021/la100486g
---------- MLA ----------
Pallarola, D., Queralto, N., Knoll, W., Ceoli, Azzaroni, O., Battaglini, F. "Redox-active concanavalin a: Synthesis, characterization, and recognition-driven assembly of interfacial architectures for bioelectronic applications" . Langmuir, vol. 26, no. 16, 2010, pp. 13684-13696.
http://dx.doi.org/10.1021/la100486g
---------- VANCOUVER ----------
Pallarola, D., Queralto, N., Knoll, W., Ceoli, Azzaroni, O., Battaglini, F. Redox-active concanavalin a: Synthesis, characterization, and recognition-driven assembly of interfacial architectures for bioelectronic applications. Langmuir. 2010;26(16):13684-13696.
http://dx.doi.org/10.1021/la100486g