Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A single layer of poly(allylamine) with a covalently attached osmium pyridine-bipyridine complex adsorbed onto a Au surface modified by mercaptopropanesulfonate has been studied theoretically with a molecular approach and experimentally by cyclic voltammetry. These investigations have been carried out at different pHs and ionic strengths of the electrolyte solution in contact with the redox polyelectrolyte modified electrode. The theory predicts strong coupling between the acid-base and redox equilibria, particularly for low ionic strength, pH close to the pKa, and high concentration of redox sites. The coupling leads to a decrease in the peak potential at pH values above the apparent pKa of the weak polyelectrolyte, in good agreement with the experimental pH dependence at 4 mM NaNO3. Theoretical calculations suggest that the inflection point in the peak position versus pH curves can be used to estimate the apparent pK a of the amino groups in the polymer. Comparison of the apparent p/Ca for PAH-Os in the film with that of poly(allylamine) reported in the literature shows that the underlying charged thiol strongly influences charge regulation in the film. A systematic study of the film thickness and the degree of protonation in sulfonate and amino groups for solutions of different pH and ionic strength shows the coupling between the different interactions. It is found that the variation of the film properties has a non-monotonic dependence on bulk pH and salt concentration. For example, the film thickness shows a maximum with electrolyte ionic strength, whose origin is attributed to the balance between electrostatic amino-amino repulsions and amino-sulfonate attractions. © 2008 American Chemical Society.

Registro:

Documento: Artículo
Título:Redox and acid-base coupling in ultrathin polyelectrolyte films
Autor:Tagliazucchi, M.; Calvo, E.J.; Szleifer, I.
Filiación:Molecular Electrochemistry Group, INQUIMAE, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
Palabras clave:Mercaptopropanesulfonate; Poly(allylamine); Salt concentration; Amines; Cyclic voltammetry; Ionic strength; Polyelectrolytes; Redox reactions; Surface treatment; Ultrathin films; alkanesulfonic acid; electrolyte; gold; organometallic compound; osmium; polyallylamine; polyamine; pyridine derivative; unclassified drug; acid base balance; adsorption; article; artificial membrane; chemical structure; chemistry; electrochemistry; oxidation reduction reaction; pH; surface property; Acid-Base Equilibrium; Adsorption; Alkanesulfonates; Electrochemistry; Electrolytes; Gold; Hydrogen-Ion Concentration; Membranes, Artificial; Models, Molecular; Organometallic Compounds; Osmium; Oxidation-Reduction; Polyamines; Pyridines; Surface Properties
Año:2008
Volumen:24
Número:6
Página de inicio:2869
Página de fin:2877
DOI: http://dx.doi.org/10.1021/la702734n
Título revista:Langmuir
Título revista abreviado:Langmuir
ISSN:07437463
CODEN:LANGD
CAS:gold, 7440-57-5; osmium, 7440-04-2; Alkanesulfonates; Electrolytes; Gold, 7440-57-5; Membranes, Artificial; Organometallic Compounds; Osmium, 7440-04-2; Polyamines; Pyridines; polyallylamine, 30551-89-4
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v24_n6_p2869_Tagliazucchi

Referencias:

  • Murray, R.W., Introduction to Molecularly Designed Electrode Surfaces (1992) Molecular Design of Electrode Surfaces, , Murray, R. W, Ed, John Wiley and Sons, Inc, New York
  • Murray, R.W., Chemically Modified Electrodes (1984) Electroanalytical Chemistry, 13, p. 191. , Bard, A. J, Ed, Marcel Dekker: New York
  • Murray, R.W., (1980) Acc. Chem. Res, 73, p. 135
  • Smith, C.P., White, H.S., (1993) Langmuir, 9, p. 1
  • White, H.S., Peterson, J.D., Cui, Q., Stevenson, R.J., (1998) J. Phys. Chem. B, 102, p. 2930
  • Bryant, M., Crooks, R.M., (1993) Langmuir, 9, p. 385
  • Burgess, I., Seivewright, B., Lennox, R.B., (2006) Langmuir, 22, p. 4420
  • Andreu, R., Calvente, J.J., Fawcett, W.R., Molero, M., (1997) Langmuir, 13, p. 5189
  • Andreu, R., Fawcett, W.R., (1994) J. Phys. Chem, 98, p. 12753
  • Fawcett, W.R., Fedurco, M., Kováčová, Z., (1994) Langmuir, 10, p. 2403
  • Laviron, E., (1980) J. Electroanal. Chem, 112, p. 1
  • Laviron, E., (1981) J. Electroanal. Chem, 124, p. 9
  • Madhiri, N., Finklea, H.O., (2006) Langmuir, 22, p. 10643
  • Katz, E.Y., Shkuropatov, A.Y., Vagabova, O.I., Shuvalov, V.A., (1989) J. Electroanal. Chem, p. 260
  • Takada, R., Gopalan, P., Ober, C.K., Abruña, H.D., (2001) Chem. Mater, 13, p. 2928
  • O'Connell, K.M., Waldner, E., Roullier, L., Laviron, E., (1984) J. Electroanal. Chem, 162, p. 77
  • Naegeli, R., Redepenning, J., Anson, F.C., (1986) J. Phys. Chem, 90, p. 6227
  • Beulen, M.W.J., Van Veggel, F.C.J.M., Reinhoudt, D.N., (1999) Chem. Commun, 19, p. 503
  • Danilowicz, C., Corton, E., Battaglini, F., (1998) J. Electroanal. Chem, 445, p. 89
  • Calvo, E.J., Etchenique, R., Danilowicz, C., Diaz, L., (1996) Anal. Chem, 68, p. 4186
  • Liu, Y., Zhao, M., Bergbreiter, D.E., Crooks, R.M., (1997) J. Am Chem. Soc, 119, p. 8720
  • Molinero, V., Calvo, E.J., (1998) J. Electroanal. Chem, 445
  • Tagliazucchi, M., Calvo, E.J., Szleifer, I., (2008) J. Phys. Chem. C, 112, p. 458
  • Nap, R., Gong, P., Szleifer, I., (2006) J. Polym. Sci., Part B: Polym. Phys, 44, p. 2638
  • Trasatti, S., (1986) Pure Appl. Chem, 58, p. 956
  • Trassati, S., (1974) J. Electroanal. Chem, 54, p. 19
  • Castelnovo, M., Joanny, J.-F., (2000) Langmuir, 16, p. 7524
  • Mokrani, C., Fatisson, J., Guérente, L., Labbé, P., (2005) Langmuir, 21, p. 4400
  • Croze, O., Cates, M., (2005) Langmuir, 27, p. 5627
  • Tagliazucchi, M., Williams, F., Calvo, E.J., (2007) J. Phys. Chem. B, 111, p. 8105
  • Carignano, M.A., Szleifer, I., (1994) J. Chem. Phys, 100, p. 3210
  • (1991) CRC Handbook of Chemical and Physics, , 72nd ed, Lide, D. R, Ed, CRC Press: Boston
  • Finklea, H.O., Snider, D.A., Fedyk, J., (1990) Langmuir, 6, p. 371
  • Bard, A.J., Faulkner, L.R., (2001) Electrochemical Methods: Fundamentals and Applications, , 2nd ed, John Wiley & Sons: New York
  • Doblhofer, K., Vorotyntsev, M., Fundamentals (1994) Electroactive Polymer Electrochemistry, p. 375. , Lyons, M. E. G, Ed, Plenum: New York
  • Rmaile, H.H., Schienoff, J.B., (2002) Langmuir, 18, p. 8263
  • Smith, R.N., McCormick, M., Barrett, C.J., Reven, L., Spiess, H.W., (2004) Macromolecules, 37, p. 4830
  • Burke, S.E., Barrett, C.J., (2003) Biomacromolecules, 4, p. 1773
  • Choi, J., Rubner, M.F., (2005) Macromolecules, 38, p. 116
  • Ohshima, H., Ohki, S., (1985) Biophys. J, 47, p. 673
  • Bain, C.D., Whitesides, G.M., (1989) Langmuir, 5, p. 1370
  • Hu, K., Bard, A.J., (1997) Langmuir, 73, p. 5114
  • Sun, L., Crooks, R.M., Ricco, A.J., (1993) Langmuir, 9, p. 1775
  • Smalley, J.F., Chalfant, K., Feldberg, S.W., Nahir, T.M., Bowden, E.F., (1999) J. Phys. Chem. B, 103, p. 1676
  • Konek, C.T., Musorrafiti, M.J., Al-Abadleh, H.A., Bertin, P.A., Nguyen, S.T., Geiger, F.M., (2004) J. Am. Chem. Soc, 126, p. 11754
  • Ninham, B.W., Parsegian, V.A., (1971) J. Theor. Biol, 37, p. 405
  • van de Steeg, H.G.M., Cohen Stuart, M.A., de Keizer, A., Bijsterbosch, B.H., (1992) Langmuir, 8, p. 2538
  • Israels, R., Leermakers, F., Fleer, G.J., Zhulina, E.B., (1994) Macromolecules, 27, p. 3249
  • Wu, T., Gong, P., Szleifer, I., Vlček, P., Šubr, V., Genzer, J., (2007) Macromolecules, 40, p. 8756
  • Gong, P., Wu, T., Genzer, J., Szleifer, I., (2007) Macromolecules, 40, p. 8765
  • Wu, T., Genzer, J., Gong, P., Szleifer, I., Vlček, P., Šubr, V., (2004) Behavior of surface-anchored poly(acrylic acid) brushes with grafting density gradients on solid substrates In Polymer, p. 287. , Brushes; Brittain, B, Advincula, R, Caster, K, Eds, Wiley & Sons
  • Forzani, E.S., Pérez, M.A., Teijelo, M.L., Calvo, E.J., (2002) Langmuir, 18, p. 9867
  • Tagliazucchi, M., Grumelli, D., Bonazzola, C., Calvo, E.J., (2006) J. Nanosci. Nanotechnol, 6, p. 1731

Citas:

---------- APA ----------
Tagliazucchi, M., Calvo, E.J. & Szleifer, I. (2008) . Redox and acid-base coupling in ultrathin polyelectrolyte films. Langmuir, 24(6), 2869-2877.
http://dx.doi.org/10.1021/la702734n
---------- CHICAGO ----------
Tagliazucchi, M., Calvo, E.J., Szleifer, I. "Redox and acid-base coupling in ultrathin polyelectrolyte films" . Langmuir 24, no. 6 (2008) : 2869-2877.
http://dx.doi.org/10.1021/la702734n
---------- MLA ----------
Tagliazucchi, M., Calvo, E.J., Szleifer, I. "Redox and acid-base coupling in ultrathin polyelectrolyte films" . Langmuir, vol. 24, no. 6, 2008, pp. 2869-2877.
http://dx.doi.org/10.1021/la702734n
---------- VANCOUVER ----------
Tagliazucchi, M., Calvo, E.J., Szleifer, I. Redox and acid-base coupling in ultrathin polyelectrolyte films. Langmuir. 2008;24(6):2869-2877.
http://dx.doi.org/10.1021/la702734n