Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The effect of a specifically adsorbed ion, phosphate, on the electrochemical response and adsorption properties of nanocrystalline TiO2 is examined. Phosphate is known to affect the ζ potential, as measured by electrophoretic mobility, by changing the charge of the oxide surface. The adsorption of a cationic probe molecule, thionine, onto TiO2 was monitored with an in-situ cell using UV-vis spectroscopy. The adsorption of the cationic dye molecule was found to be governed by changes in the ζ potential, whether the ζ potential was modified by pH or by changes in phosphate concentration. Onset potential measurements were used to estimate the flat-band potential of a Ti/TiO2 electrode. The flat-band potential results for the electrode showed a nearly Nernstian response to changes in the pH for a broad pH range. The addition of phosphate had no effect on the onset potential or on the shape of the photocurrent/potential curve. Flat-band potentials determined by Mott-Schottky analysis in the absence of phosphate were Nernstian only for pH 3-7, matching the pH dependence of the electrophoretic mobility results. With the addition of phosphate, impedance spectroscopy results showed additional space charge capacitance, peaking at potentials 150 mV positive of the flat-band potential. UV irradiation also resulted in an additional space charge capacitance. For both cases, the additional space charge capacitance was accompanied by a decrease in the resistance of the electrode, as shown in Nyquist plots. The change in film conductivity is believed to affect the space charge layer capacitance. Similarly, a decrease in film resistance was also seen with lower pH values. Currently, this change in TiO2 film conductivity with surface acidity is being investigated in our laboratory for application in fuel cell electrolytes.

Registro:

Documento: Artículo
Título:Control of surface and ζ potentials on nanoporous TiO2 films by potential-determining and specifically adsorbed ions
Autor:Nelson, B.P.; Candal, R.; Corn, R.M.; Anderson, M.A.
Ciudad:Washington, DC, United States
Filiación:Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, United States
Water Chemistry Program, University of Wisconsin-Madison, 660 North Park Street, Madison, WI 53706, United States
INQUIMAE, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, CP 1428, Buenos Aires, Argentina
Palabras clave:Adsorption; Capacitance; Composition effects; Electric potential; Electrodes; Electrophoresis; Nanostructured materials; pH effects; Phosphates; Photocurrents; Porous materials; Sulfur compounds; Electrophoretic mobility; Mott-Schottky analysis; Titanium dioxide
Año:2000
Volumen:16
Número:15
Página de inicio:6094
Página de fin:6101
DOI: http://dx.doi.org/10.1021/la9911584
Título revista:Langmuir
Título revista abreviado:Langmuir
ISSN:07437463
CODEN:LANGD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v16_n15_p6094_Nelson

Referencias:

  • Bach, U., Lupo, D., Comte, P., Moser, J.E., Weissortel, F., Salbeck, J., Spreitzer, H., Gratzel, M., (1998) Nature, 395, pp. 583-585
  • O'Regan, B., Grätzel, M., (1991) Nature, 353, p. 737
  • Papageorgiou, N., Grätzel, M., (1998) Abs. Pap.-Am. Chem. Soc., 215, p. 232
  • Bechinger, C., Ferrere, S., Zaban, A., Sprague, J., Gregg, B.A., (1996) Nature, 383, p. 608
  • Ollis, D.E., Al-Ekabi, H., (1993) Photocatalytic Purification of Water and Air, , Wiley-Interscience: Amsterdam
  • Pichat, P., Herrmann, J.M., (1989) Photocatalysis. Fundamentals and Applications, , Wiley: New York
  • Serpone, N., Pelizzetti, E., (1993) Photocatalysis Fundamentals and Applications, , Elsevier: Amsterdam
  • Bahnemann, D., Cunningham, J., Fox, M.A., Pelizzetti, E., Pichat, P., Serpone, N., (1994) Aquatic and Surface Photochemistry, , Lewis: Boca Raton, FL
  • Pichat, P., Ertl, G., Knözinger, H., Weitkamp, J., (1997) Handbook of Heterogeneous Photocatalysis, 4, p. 2111. , VCH: Weinheim, Germany
  • Furlong, D.N., Wells, D., Sasse, W.H.F., (1985) J. Phys. Chem., 89, pp. 626-635
  • Mills, A., Hunte, S.L., (1997) J. Photochem. Photobiol., A, 108, p. 1
  • Yan, S.G., Hupp, J.T., (1996) J. Phys. Chem., 100, pp. 6867-6870
  • Kay, A., Humphery-Baker, R., Gratzel, M., (1994) J. Phys. Chem., 98, pp. 952-959
  • Vinodgopal, K., Hua, X., Dahlgren, R.L., Lappin, A.G., Patterson, L.K., Kamat, P.V., (1995) J. Phys. Chem., 99, p. 10883
  • Vichi, F.M., Tejedor-Tejedor, M.I., Anderson, M.A., Chem. Mater., , in press
  • Vichi, F.M., Colomer, M.T., Anderson, M.A., (1999) Electrochem. Solid State Lett., 2, pp. 313-316
  • Hunter, R.J., (1981) Zeta Potential in Colloid Science, , Academic Press: New York
  • Akratopulu, K.C., Kordulis, C., Lycourghiotis, A., (1990) J. Chem. Soc., Faraday Trans., 86, pp. 3437-3440
  • Jaffrezic-Renault, N., Pichat, P., (1986) J. Phys. Chem., 90, pp. 2733-2738
  • Anderson, M.A., Malotky, D.T., (1979) J. Colloid Interface Sci., 72, pp. 413-427
  • Anderson, M.A., Rubin, A.J., (1981) Adsorption of Inorganics at Solid-Liquid Interfaces, , Ann Arbor Science Publishers: Ann Arbor, MI
  • Tejedor-Tejedor, M.I., Vicchi, F., (1998), Unpublished results; Shiga, A., Tsujiko, A., Ide, T., Nakato, Y., (1998) J. Phys. Chem. B, 102, pp. 6049-6055
  • Wahl, A., Augustynski, J., (1998) J. Phys. Chem. B, 702, pp. 7820-7828
  • Cao, F., Oskam, G., Searson, P.C., Stipkala, J.M., Heimer, T.A., Farzad, F., Meyer, G.J., (1995) J. Phys. Chem., 99, pp. 11974-11980
  • Abdullah, M., Low, G.K.-C., Matthews, R.W., (1990) J. Phys. Chem., 94, pp. 6820-6825
  • Kim, D.H., Anderson, M.A., (1994) Environ. Sci. Technol., 28, p. 1994
  • Hagfeldt, A., Bjorksten, U., Gratzel, M.J., (1996) Phys. Chem., 100, pp. 8046-8048
  • Dolata, M., Kedzierzawski, P., Augustynski, J., (1996) Electrochim. Acta, 47, pp. 1287-1293
  • Bard, A.J., Faulkner, L.R., (1980) Electrochemical Methods, , John Wiley & Sons: New York
  • Kavan, L., Grätzel, M., Gilbert, S.E., Klemenz, C., Scheel, H.J., (1996) J. Am. Chem. Soc., 118, pp. 6716-6723
  • Tafalla, D., Salvador, P., (1989) J. Electroanal. Chem. Interfacial Electrochem., 270, pp. 285-295
  • Candal, R., Zeltner, W.A., Anderson, M.A., (1998) J. Adv. Oxid. Technol., 3, pp. 270-276
  • Xu, Q., Anderson, M.A., (1991) J. Mater. Res., 6, pp. 1073-1081
  • Xu, Q., Anderson, M.A., (1994) J. Am. Ceram. Soc., 77, pp. 1939-1945
  • Boukamp, B.A., (1993) EQUIVCRT, , EG&G PARC: Enschede, The Netherlands
  • Tejedor-Tejedor, M.I., Anderson, M.A., (1990) Langmuir, 6, pp. 602-611
  • Flaig-Baumann, R., Hermann, M., Boehm, H., (1970) Z. Anorg. Allg. Chem., 372, p. 296
  • Kazarinov, V.E., Andreev, V.N., Mayorov, A.P., (1981) J. Electroanal. Chem. Interfacial Electrochem., 130, pp. 277-285
  • Liu, D., Kamat, P.V., (1996) Langmuir, 12, pp. 2190-2195
  • Patrick, B., Kamat, P.V., (1992) J. Phys. Chem., 96, pp. 1423-1428
  • De Tacconi, N.R., Carmona, J., Rajeshwar, K.J., (1997) Electrochem. Soc., 144, pp. 2486-2490
  • Tomkiewicz, M., (1979) J. Electrochem. Soc., 126, pp. 1505-1510
  • Lantz, J.M., Baba, R., Corn, R.M., (1993) J. Phys. Chem., 97, pp. 7392-7395
  • Konenkamp, R., Henninger, R., Hoyer, P., (1993) J. Phys. Chem. B., 97, pp. 7328-7330
  • Finklea, H.O., (1988) Semiconductor Electrodes; Finklea, H. O., Ed.; Elsevier, p. 74
  • Poznyak, S.K., Kokorin, A.I., Kulak, A.I., (1998) J. Electroanal. Chem. Interfacial Electrochem., 442, pp. 99-105
  • Vinodgopal, K., Hotchandani, S., Kamat, P.V., (1993) J. Phys. Chem., 97, pp. 9040-9044
  • Hodes, G., Howell, I.D.S., Peter, L.M., (1992) J. Electrochem. Soc., p. 139
  • O'Regan, B., Moser, J., Anderson, M.A., Gratzel, M., (1990) J. Phys. Chem., 94, pp. 8720-8726
  • Wang, J.C., Bates, J.B., (1986) Solid State Ionics, 18-19, p. 224
  • Jiang, S.P., Love, J.G., Badwel, S.P.S., (1997) Electrical Properties of Oxide Materials, 125-126, pp. 81-132. , Trans Tech Publications: Aedermannsdorf, Switzerland
  • Nogami, G., Ogawa, Y., Ogawa, Y., (1988) J. Electrochem. Soc., 735, pp. 3008-3015
  • Dunn, W.W., Aikawa, Y., Bard, A.J., (1981) J. Am. Chem. Soc., 703, pp. 3456-3459

Citas:

---------- APA ----------
Nelson, B.P., Candal, R., Corn, R.M. & Anderson, M.A. (2000) . Control of surface and ζ potentials on nanoporous TiO2 films by potential-determining and specifically adsorbed ions. Langmuir, 16(15), 6094-6101.
http://dx.doi.org/10.1021/la9911584
---------- CHICAGO ----------
Nelson, B.P., Candal, R., Corn, R.M., Anderson, M.A. "Control of surface and ζ potentials on nanoporous TiO2 films by potential-determining and specifically adsorbed ions" . Langmuir 16, no. 15 (2000) : 6094-6101.
http://dx.doi.org/10.1021/la9911584
---------- MLA ----------
Nelson, B.P., Candal, R., Corn, R.M., Anderson, M.A. "Control of surface and ζ potentials on nanoporous TiO2 films by potential-determining and specifically adsorbed ions" . Langmuir, vol. 16, no. 15, 2000, pp. 6094-6101.
http://dx.doi.org/10.1021/la9911584
---------- VANCOUVER ----------
Nelson, B.P., Candal, R., Corn, R.M., Anderson, M.A. Control of surface and ζ potentials on nanoporous TiO2 films by potential-determining and specifically adsorbed ions. Langmuir. 2000;16(15):6094-6101.
http://dx.doi.org/10.1021/la9911584