Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A new model for the characterization of porous materials using quartz crystal impedance analysis is proposed. The model describes the equivalent electrical and/or mechanical impedance of the quartz crystal in contact with a finite layer of a rigid porous material which is immersed in a semi-infinite liquid. The characteristic porosity length (ξ), layer thickness (d), liquid density (ρ), an viscosity (η) are taken into account. For films thick compared with the characteristic porosity length (d ≫ ξ), the model predicts a net increase of the area which is translated into a linear relationship between the quartz equivalent impedance Z = R + XL (XL = iωL, ω = 2πf, f being the oscillation frequency of the quartz resonator) and the ratio d/ξ. For low-viscosity Newtonian liquids, for which the velocity decay length δ = (2ωη/ρ)1/2 is much smaller than ξ, Z corresponds to the impedance of a semi-infinite liquid in contact with an increased effective quartz area which scales with the ratio d/ξ. In this case, R = XL in agreement with Kanazawa equation. For liquids of higher viscosity, the effect of the fluid trapped by the porous matrix is apparent and is reflected in the impedance, which has an imaginary part (XL) higher than its real part (R). In the limit of a very viscous liquid, the movement of the porous film is completely transferred to the liquid and all the mass moves in-phase with the quartz crystal electrode. In this limiting case the model predicts a purely inductive impedance, which corresponds to a resonant frequency in agreement with the Sauerbrey equation. The model allows us, for the first time, to explain the almost linear behavior of R vs XL along the growth process of conducting polymers, which present a well-known open fibrous structure. Films of polyaniline-polystyrenesulfonate were deposited on the quartz crystal under several conditions to test the model, and a very good agreement was found.

Registro:

Documento: Artículo
Título:Characterization of porous thin films using quartz crystal shear resonators
Autor:Etchenique, R.; Brudny, V.L.
Ciudad:Washington, DC, United States
Filiación:Ctro. de Invest. Químicas, Univ. Autonoma del Estado de Morelos, Av. Univ. No. 1001 Col. Chamilpa, CP 62210, Cuernavaca, Morelos, Mexico
Facultad de Ciencias, Univ. Autonoma del Estado de Morelos, Av. Univ. No. 1001 Col. Chamilpa, CP 62210, Cuernavaca, Morelos, Mexico
Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, CP 1428, Buenos Aires, Argentina
Departamento de Física, Fac. de Ciencias Exactas y Naturales, Universidad de Buenos Aires, CP 1428, Buenos Aires, Argentina
Palabras clave:Electric properties; Film growth; Mathematical models; Mechanical properties; Numerical methods; Porosity; Porous materials; Viscosity; Kanazawa equation; Quartz crystal shear resonators; Sauerbrey equation; Thin films
Año:2000
Volumen:16
Número:11
Página de inicio:5064
Página de fin:5071
DOI: http://dx.doi.org/10.1021/la991145q
Título revista:Langmuir
Título revista abreviado:Langmuir
ISSN:07437463
CODEN:LANGD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v16_n11_p5064_Etchenique

Referencias:

  • Noel, M.A., Topart, P.A., (1994) Anal. Chem., 66, p. 484
  • Muramatsu, H., Kimura, K., (1992) Anal. Chem., 64, p. 2502
  • Etchenique, R.A., Calvo, E.J., (1997) Anal. Chem., 69 (23), p. 4833
  • Mason, W.P., Baker, W., McSkimin, H.J., Heiss, J.H., (1949) Phys. Rev., 75 (6), p. 936
  • Sauerbrey, G., (1959) Z. Phys., 155, p. 206
  • Nomura, T., Minemura, A., (1980) Nippon Kagaku Kaishi, p. 1621
  • Konash, P.L., Bastiaans, G.J., (1980) Anal. Chem., 52, p. 1929
  • Bruckenstein, S., Shay, M., (1985) J. Electroanal. Chem., 188, p. 131
  • Kanazawa, K.K., Gordon, J.G., (1985) Anal. Chim. Acta, 175, p. 99
  • Martin, J., Granstaff, V.E., Frye, G.C., (1991) Anal. Chem., 63, p. 2272
  • Reed, C.E., Kanazawa, K.K., Kaufman, J.H., (1990) J. Appl. Phys., 68, p. 1993
  • Granstaff, E., Martin, S.J., (1994) J. Appl. Phys., 75, p. 1319
  • Liess, H.-D., Knezevic, A., Rother, A., Muenz, J., (1997) Faraday Discuss., 107, p. 39
  • Daikhin, L., Urbakh, M., (1996) Langmuir, 12, p. 6354
  • Wolff, O., Seydel, E., Johannsmann, D., (1997) Faraday Discuss., 107, p. 91
  • Etchenique, R.A., Calvo, E.J., (1999) Electrochem. Commun., 1 (5), p. 167
  • Ferraris, J.P., Eissa, M.M., Brotherston, I.D., Loveday, D.C., Moxey, A.A., (1998) J. Electroanal. Chem., 459 (131), p. 57
  • Dinh, H.N., Ding, J., Xia, S.J., Birss, V.I., (1998) J. Electroanal. Chem., 459 (131), p. 45
  • DuBois C.J., Jr., McCarley, R.L., (1998) J. Electroanal. Chem., 454, p. 99
  • Topart, P.A., Noël, M.A., (1994) Anal. Chem., 66, p. 2926
  • Bandey, H.L., Hillman, A.R., Brown, M.J., Martin, S.J., (1997) Faraday Discuss., 107, p. 105
  • Etchenique, R., Brudny, V.L., (1999) Electrochem. Commun., 1, p. 441
  • Van Dyke, K., (1925) Phys. Rev., 25, p. 895
  • Sahimi, M., (1993) M. Rev. Modern Phys., 65, p. 1393
  • Rubinstein, J., Torquato, S., (1989) J. Fluid Mech., 206, p. 25
  • Brinkman, H.C., (1947) Appl. Sci. Res., A, 1, p. 27
  • Charlaix, E., Kushnick, A.P., Stokes, J.P., (1988) Phys. Rev. Lett., 61 (14), p. 1595
  • Johnson, D.L., Koplik, J., Dashen, R., (1987) J. Fluid Mech., 176, p. 379
  • Knackstedt, M.A., Sahimi, M., Chan, D.Y.C., (1993) Phys. Rev. E, 47 (4), p. 2593
  • Kanazawa, K.K., (1997) Faraday Discuss., 107, p. 77
  • Calvo, E.J., Etchenique, R., Bartlett, P.N., Singhal, K., Santamaria, C., (1997) Faraday Discuss., 107, p. 141
  • Calvo, E.J., Danilowicz, C., Etchenique, R., (1995) J. Chem. Soc., Faraday Trans., 91, p. 4083
  • Beck, R., Weil, K., (1992) J. Electrochem. Soc., 139, p. 453
  • Ferry, J.D., (1980) Viscoelastic Properties of Polymers, 3rd Ed., , Wiley: New York
  • Etchenique, R., Weisz, A.D., (1999) J. Appl. Phys., 86 (4), p. 1994

Citas:

---------- APA ----------
Etchenique, R. & Brudny, V.L. (2000) . Characterization of porous thin films using quartz crystal shear resonators. Langmuir, 16(11), 5064-5071.
http://dx.doi.org/10.1021/la991145q
---------- CHICAGO ----------
Etchenique, R., Brudny, V.L. "Characterization of porous thin films using quartz crystal shear resonators" . Langmuir 16, no. 11 (2000) : 5064-5071.
http://dx.doi.org/10.1021/la991145q
---------- MLA ----------
Etchenique, R., Brudny, V.L. "Characterization of porous thin films using quartz crystal shear resonators" . Langmuir, vol. 16, no. 11, 2000, pp. 5064-5071.
http://dx.doi.org/10.1021/la991145q
---------- VANCOUVER ----------
Etchenique, R., Brudny, V.L. Characterization of porous thin films using quartz crystal shear resonators. Langmuir. 2000;16(11):5064-5071.
http://dx.doi.org/10.1021/la991145q