Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte la política de Acceso Abierto del editor

Abstract:

A series of fluorescent compounds (rhodamine 101, cresyl violet, oxazine 1, and tris(2,2′-bipyridyl)-ruthenium(II) chloride hexahydrate) were used as molecular probes in titania gels. Sols and gels of pH = 2.5 and 3.5 were prepared using standard methods. Absorption and emission spectra and fluorescence quantum yields of the probes were measured at room temperature. Fluorescence intensity and steady-state fluorescence anisotropy, 〈r〉, were measured for cresyl violet and oxazine 1 at controlled temperature between 25 and 95 °C as function of aging. The local environment of Rh101, Rbpy, CV, and Ox1 in the gels at 25 °C is essentially aqueous. Among these compounds, only CV and Ox1 are appropriate for fluorescence anisotropy studies in titania gels of low pH. Parameters for the calculation of the local friction, ξ, inside the cavities were obtained from previous experimental data or by modeling a symmetrical molecule as prolate ellipsoid. For CV, the comparison of the fluorescence anisotropy data in microheterogeneous systems and homogeneous solutions can be directly performed, because its rotational dynamics has been very well characterized in water and alcohols. The fluorescence anisotropy and photophysical parameters of Ox1 in water and alcohols are less known, but the symmetry properties allows us to obtain analytical expressions for the rotational correlation times and for the local friction. Even when the bulk viscosity of the gel increases, there is a minor restriction for the rotation of the fluorescent probes, indicating that the gel is composed of a rigid network with solvent-filled cavities of volumes larger than 500-600 Å 3 . The similarity of the values of ξ for both probes is a strong validation for the model used for Ox1 and allows Ox1 to be used as an alternative to CV for the method.

Registro:

Documento: Artículo
Título:Microviscosity in the cavities of titania gels studied by steady-state fluorescence anisotropy
Autor:Marchi, M.C.; Bilmes, S.A.; Negri, R.M.
Filiación:INQUIMAE, Dpto. de Quim. Inorg., Analitica Q., Pabellón II, (1428) Buenos Aires, Argentina
Palabras clave:Absorption spectroscopy; Aging of materials; Alcohols; Anisotropy; Emission spectroscopy; Fluorescence; Friction; pH effects; Quantum theory; Titanium oxides; Viscosity; Water; Steady state fluorescence anisotropy; Titania gels; Gels
Año:1997
Volumen:13
Número:14
Página de inicio:3665
Página de fin:3673
Título revista:Langmuir
Título revista abreviado:Langmuir
ISSN:07437463
CODEN:LANGD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v13_n14_p3665_Marchi

Referencias:

  • Brinker, C.J., Scherer, G.W., (1990) Sol-Gel Science. The Physics and Chemist of Sol-Gel Processing, , Academic Press, Inc.: New York
  • Sanchez, C., Ribot, F., (1994) New J. Chem., 18, p. 1007
  • Lecomte, M., Viana, B., Sanchez, C., (1991) J. Chim. Phys., 88, p. 39
  • Livage, J., Sanchez, C., (1992) J. Non-Cryst. Solids, 145, p. 11
  • Bischoff, B.L., Anderson, M.A., (1995) Chem. Mater., 7, p. 1772
  • Winter, R., Hua, D.W., Song, X., Mantulin, W., Jonas, J., (1990) J. Phys. Chem., 94, p. 2706
  • Narang, U., Jordan, J.D., Bright, F.V., Prasad, P.N., (1994) J. Phys. Chem., 98, p. 8101
  • Narang, U., Wang, R., Prasad, P.N., Bright, F.V., (1994) J. Phys. Chem., 98, p. 17
  • Negishi, N., Fujii, T., Anpo, M., (1993) Langmuir, 9, p. 3320
  • Anderson, C., Bard, A.J., (1995) J. Phys. Chem., 99, p. 9882
  • Wang, R., Narang, U., Bright, F.V., Prasad, P.N., (1993) Anal. Chem., 65, p. 2671
  • Koslova, N.I., Viana, B., Sanchez, C., (1993) J. Mater. Chem., 3, p. 111
  • Lebeau, B., Herlet, N., Livage, J., Sanchez, C., (1993) Chem. Phys. Lett., 206, p. 15
  • Sanchez, C., (1992) Bol. Soc. Esp. Ceram. Vidrio, 31, p. 89
  • Dunn, B., Zink, J.I., (1991) J. Mater. Chem., 1, p. 903
  • Avnir, D., (1995) Acc. Chem. Res., 28, p. 328
  • Devlin, K., O'Kelly, B., Tang, Z.R., McDonagh, C., McGilp, J.F., (1991) J. Non-Cryst. Solids, 135, p. 8
  • Hiratsuka, R.S., Santilli, C.V., Pukinelli, S.H., (1995) Quim. Nova, 18, p. 171
  • Aguado, M.A., Anderson, M.A., (1993) Sol. Energy Mater. Sol. Cells, 28, p. 345
  • Kim, D.H., Anderson, M.A., (1994) Environ. Sci. Tecnol., 28, p. 479
  • O'Regan, B., Moser, J., Anderson, M., Grätzel, M., (1990) J. Phys. Chem., 94, p. 8720
  • Heller, A., (1995) Acc. Chem. Res., 28, p. 503
  • Suzuki, K., (1993) Trace Met. Environ., 3, p. 421
  • Matthews, R.W., (1993) Trace Met. Environ., 3, p. 121
  • Morrison, S.R., (1980) Electrochemistry at Semiconductor and Oxidized Metal Electrodes, , Plenum: New York
  • Spilter, M.T., Calvin, M., (1977) J. Chem. Phys., 66, p. 4294
  • Grutzen, M., Ameloot, M., Boens, N., Negri, R.M., De Schryver, F.C., (1993) J. Phys. Chem., 97, p. 8133
  • Flom, S.R., Flendler, J.H., (1988) J. Phys. Chem., 92, p. 5908
  • Levitus, M., Negri, R.M., Aramendía, P.F., (1995) J. Phys. Chem., 99, p. 14231
  • Kawski, A., (1993) Crit. Rev. Anal. Chem., 23, p. 459
  • Lakowicz, J.R., (1983) Principles of Fluorescence Spectroscopy, , Plenum Press: New York
  • Gudgin-Templeton, E.F., Kenney-Wallace, G.A., (1986) J. Phys, Chem., 90, p. 2896
  • Alavi, D.S., Hartman, R.S., Waldeck, D.H., (1990) J. Chem. Phys., 92, p. 4055
  • Wittouck, N., Negri, R.M., Ameloot, M., De Schryver, F.C., (1994) J. Am. Chem. Soc., 116, p. 10601
  • Dale, R.E., Time-resolved Fluorescence Spectroscopy in Biochemistry and Biology (1983) NATO ASI Series A: Life Sciences, 69, pp. 605-606. , Cundall, R. B., Dale, R. E., Eds.; Plenum Press: New York
  • Visser, A.J.W.G., Vos, K., Van Hoek, A., Santema, J.S., (1988) J. Phys. Chem., 92, p. 759
  • Dutt, G.B., Ameloot, M., Bernik, D., Negri, R.M., De Schryver, F.C., (1996) J. Phys. Chem., 100, p. 9751
  • Ameloot, M., Hendricx, H., Herreman, W., Pottel, H., Van Cauwelaert, F., Van Der Meer, W., (1984) Biophys. J., 46, p. 525
  • Parker, C.A., (1968) Photoluminiscence of Solutions, , Elsevier: Amsterdam
  • Karstens, T., Kobs, K., (1980) J. Phys. Chem., 84, p. 1871
  • Magde, D., Brannon, J.H., Olmsted III, J., (1979) J. Phys. Chem., 83, p. 696
  • Blau, W., Dankesreiter, W., Penzkofer, A., (1984) Chem. Phys., 85, p. 473
  • Juris, A., Balzani, V., Barigelletti, F., Capagna, S., Belser, P., Von Zelewsky, A., (1988) Coord. Chem. Rev., 84, p. 85
  • Eaton, D.F., (1988) Pure Appl. Chem., 60, p. 1107
  • Dale, R.E., Time-resolved Fluorescence Spectroscopy in Biochemistry and Biology (1983) NATO ASI Series A: Life Sciences, 69, pp. 555-612. , Cundall, R. B., Dale, R. E., Eds.; Plenum Press: New York
  • Fitremann, J., Doeuff, S., Sanchez, C., (1990) Ann. Chim. Fr., 15, p. 421
  • Aramendía, P.F., Negri, R.M., San Roman, E., (1994) J. Phys. Chem., 98, p. 3165
  • Blanchard, G.J., Wirth, M.J., (1985) J. Chem. Phys., 82, p. 39
  • Dutt, G.B., Doraiswamy, S., Periasamy, N., Venkataraman, B., (1990) J. Chem. Phys., 93, p. 8498
  • Dutt, G.B., Doraiswamy, S.J., (1992) J. Chem. Phys., 96, p. 2475
  • Blanchard, G.J., Wirth, M.J., (1986) J. Phys. Chem., 90, p. 2521
  • Blanchard, G.J., (1987) J. Phys. Chem., 87, p. 6803
  • Blanchard, G.J., (1989) J. Anal. Chem., 61, p. 2394
  • Von Jena, A., Lessing, H.E., (1979) Chem. Phys., 40, p. 245
  • Millar, D.P., Shah, R., Zewail, A.H., (1979) Chem. Phys. Lett., 66, p. 435
  • Beddard, G.S., Doust, T., Porter, G., (1981) Chem. Phys., 61, p. 17
  • Baran, J., Langley, A.J., Jones, W.J., (1984) J. Chem. Phys., 87, p. 305
  • Waldeck, D., Cross Jr., A., McDonald, D., Fleming, G.R., (1981) J. Chem. Phys., 74, p. 3381
  • Rodríguez, R., Blesa, M.A., Regazzoni, A.E., (1996) J. Colloid Interface Sci., 177, p. 122
  • Negri, R.M., Personal communication; Strickler, S.J., Berg, R.A., (1962) J. Chem. Phys., 37, p. 814
  • Dutt, G.B., Doraiswamy, S., Periasamy, N., (1991) J. Chem. Phys., 94, p. 5360
  • Bondi, A., (1964) J. Phys. Chem., 68, p. 441
  • Edward, J.T., (1970) J. Chem. Educ., 47, p. 261
  • (1994) CRC Handbook of Chemistry and Physics, 75th Ed., , CRC Press: Boca Raton, FL

Citas:

---------- APA ----------
Marchi, M.C., Bilmes, S.A. & Negri, R.M. (1997) . Microviscosity in the cavities of titania gels studied by steady-state fluorescence anisotropy. Langmuir, 13(14), 3665-3673.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v13_n14_p3665_Marchi [ ]
---------- CHICAGO ----------
Marchi, M.C., Bilmes, S.A., Negri, R.M. "Microviscosity in the cavities of titania gels studied by steady-state fluorescence anisotropy" . Langmuir 13, no. 14 (1997) : 3665-3673.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v13_n14_p3665_Marchi [ ]
---------- MLA ----------
Marchi, M.C., Bilmes, S.A., Negri, R.M. "Microviscosity in the cavities of titania gels studied by steady-state fluorescence anisotropy" . Langmuir, vol. 13, no. 14, 1997, pp. 3665-3673.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v13_n14_p3665_Marchi [ ]
---------- VANCOUVER ----------
Marchi, M.C., Bilmes, S.A., Negri, R.M. Microviscosity in the cavities of titania gels studied by steady-state fluorescence anisotropy. Langmuir. 1997;13(14):3665-3673.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07437463_v13_n14_p3665_Marchi [ ]