Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The movement and shaping of the current sheath in coaxial plasma guns is numerically modelled by means of a dynamic finite-elements representation. Numerical instabilities are avoided by a reshaping algorithm applied during the tracking of the current sheath acceleration. Improving upon older versions of the algorithm, the present model includes a delay model to treat the dielectric breakdown. Comparison against experimental measurements showed very good performances in representing the arrival times of the shock front at different filling pressures. © 2005 IOP Publishing Ltd.

Registro:

Documento: Artículo
Título:Finite-elements numerical model of the current-sheet movement and shaping in coaxial discharges
Autor:Casanova, F.; Moreno, C.; Clausse, A.
Filiación:CNEA-CONICET, Universidad Nacional Del Centro, 7000 Tandil, Argentina
INFIP-PLADEMA, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Palabras clave:Acceleration; Algorithms; Capacitance; Electric breakdown; Electric currents; Electric discharges; Electric resistance; Electrodes; Inductance; Mathematical models; Permittivity; Plasma guns; Coaxial discharges; Current sheaths; Dielectric breakdown; Filling pressures; Finite element method
Año:2005
Volumen:47
Número:8
Página de inicio:1239
Página de fin:1250
DOI: http://dx.doi.org/10.1088/0741-3335/47/8/007
Título revista:Plasma Physics and Controlled Fusion
Título revista abreviado:Plasma Phys Controlled Fusion
ISSN:07413335
CODEN:PLPHB
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07413335_v47_n8_p1239_Casanova

Referencias:

  • Mather, J.W., Investigation of the high-energy acceleration mode in the coaxial gun (1964) Phys. Fluids, 7, pp. 5-28
  • Mather, J.W., Dense plasma focus (1971) Methods of Experimental Physics, 9, pp. 187-249
  • Filippov, N.V., Filippova, T.I., (1965) Proc. 2nd IAEA Conf. on Plasma Physics and Controlled Nuclear Fusion Research, 2, pp. 405-416
  • Silva, P., Moreno, J., Soto, L., Birstein, L., Mayer, R., Kies, W., Neutron emission from a fast plasma focus of 400 Joules (2003) Appl. Phys. Lett., 83 (16), p. 3269
  • Zakaullah, M., Alamgir, K., Shafiq, M., Sharif, M., Waheed, A., Murtaza, G., Low-energy plasma focus as a tailored x-ray source (2000) J. Fusion Energy, 19 (2), pp. 143-157
  • Lee, S., Lee, P., Zhang, G., Feng, X., Gribkov, V., Liu, M., Serban, A., Wong, T.K.S., High rep rate high performance plasma focus as a powerful radiation source (1998) IEEE Trans. Plasma Sci., 26 (4), pp. 1119-1126
  • Moreno, C., Clausse, A., Martínez, J.F., Llovera, R., Tartaglione, A., Ultrafast x-ray introspective imaging of metallic objects using a plasma focus (2001) Nukleonika, 46 (1 SUPPL.), pp. 33-S34
  • Moreno, C., Clausse, A., Martínez, J., Llovera, R., Tartaglione, A., Venere, M., Barbuzza, R., Del Fresno, M., Using a 4.7 kJ plasma focus for introspective imaging of metallic objects and for neutronic detection of water (2000) AIP Conf. Proc., 563, pp. 300-305
  • Gratton, F., Vargas, M., Two-dimensional electromechanical model of the plasma focus (1983) Energy Storage, Compression, and Switching, 2, pp. 353-386
  • Lee, S., Technology of a small plasma focus incorporating some experiences with the UNU/ICTP PFF (1990) Small Plasma Physics Experiments, 2, pp. 113-169
  • Mathuthu, M., Zengeni, T.G., Gholap, A.V., The three-phase theory for plasma focus devices (1997) IEEE Trans. Plasma Sci., 25 (6), pp. 1382-1388
  • González, J., Florido, P., Bruzzone, H., Clausse, A., A lumped parameter model of plasma focus (2004) IEEE Trans. Plasma Sci., 32 (3), pp. 1383-1391
  • Potter, D.E., Numerical studies of the plasma focus (1971) Phys. Fluids, 14 (9), pp. 1911-1924
  • Maxon, S., Eddleman, J., Two-dimensional magnetohydrodynamic calculation of the plasma focus (1978) Phys. Fluids, 21 (10), pp. 1856-1865
  • Moreno, C., Casanova, F., Correa, G., Clausse, A., Experimental study and modeling of the plasma dynamics of magnetically driven shock waves in a coaxial tube (2003) Plasma Phys. Control. Fusion, 45 (12), pp. 1989-1999
  • Bruzzone, H., Kelly, H., Moreno, C., On the effect of finite closure time of switches in electrical circuits with fast transient behaviour (1989) Am. J. Phys., 57 (1), p. 63
  • Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T., (1988) Numerical Recipes in C: The Art of Scientific Computing
  • Meyer, B., (1997) Object-Oriented Software Construction
  • Bruzzone, H., Martínez, J., Cinematic of the current sheet in a pulsed coaxial plasma source operated with uniform gas filling (2001) Plasma Sources Sci. Technol., 10 (3), pp. 471-477
  • Bruzzone, H., Moreno, C., Kelly, H., Measurements of current sheets in plasmas with a finite-sized magnetic probe (1991) Meas. Sci. Technol., 2 (12), pp. 1195-1200

Citas:

---------- APA ----------
Casanova, F., Moreno, C. & Clausse, A. (2005) . Finite-elements numerical model of the current-sheet movement and shaping in coaxial discharges. Plasma Physics and Controlled Fusion, 47(8), 1239-1250.
http://dx.doi.org/10.1088/0741-3335/47/8/007
---------- CHICAGO ----------
Casanova, F., Moreno, C., Clausse, A. "Finite-elements numerical model of the current-sheet movement and shaping in coaxial discharges" . Plasma Physics and Controlled Fusion 47, no. 8 (2005) : 1239-1250.
http://dx.doi.org/10.1088/0741-3335/47/8/007
---------- MLA ----------
Casanova, F., Moreno, C., Clausse, A. "Finite-elements numerical model of the current-sheet movement and shaping in coaxial discharges" . Plasma Physics and Controlled Fusion, vol. 47, no. 8, 2005, pp. 1239-1250.
http://dx.doi.org/10.1088/0741-3335/47/8/007
---------- VANCOUVER ----------
Casanova, F., Moreno, C., Clausse, A. Finite-elements numerical model of the current-sheet movement and shaping in coaxial discharges. Plasma Phys Controlled Fusion. 2005;47(8):1239-1250.
http://dx.doi.org/10.1088/0741-3335/47/8/007