Artículo

Goldin, M.A.; Francisco, D.; Ledesma, S. "Simulating Bell inequality violations with classical optics encoded qubits" (2010) Journal of the Optical Society of America B: Optical Physics. 27(4):779-786
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We present here a classical optics device based on an imaging architecture as an analogy of a quantum system where the violation of the Bell inequality can be evidenced. Quantum states are encoded using an electromagnetic wave modulated in amplitude and phase. Unitary operations involved in the measurement of the observables are simulated with the use of a coherent optical processor. The images obtained in the output of the process contain all the information about the possible outcomes of the joint measurement. By measuring the intensity distribution in the image plane we evaluate the mean values of the simulated observables. The obtained experimental results show how some correlations of Clauser-Horne-Shimony-Holt-type exceed the upper bound imposed by the local realism hypothesis as a consequence of the joint effect of entanglement and two-particle interference. © 2010 Optical Society of America.

Registro:

Documento: Artículo
Título:Simulating Bell inequality violations with classical optics encoded qubits
Autor:Goldin, M.A.; Francisco, D.; Ledesma, S.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Palabras clave:Bells; Electromagnetic waves; Quantum optics; Bell inequalities; Bell-inequality violations; Classical optics; Clauser horne shimony holts; Coherent optical; Intensity distribution; Joint measurement; Unitary operation; Quantum theory
Año:2010
Volumen:27
Número:4
Página de inicio:779
Página de fin:786
DOI: http://dx.doi.org/10.1364/JOSAB.27.000779
Título revista:Journal of the Optical Society of America B: Optical Physics
Título revista abreviado:J Opt Soc Am B
ISSN:07403224
CODEN:JOBPD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07403224_v27_n4_p779_Goldin

Referencias:

  • Cerf, N.J., Adami, C., Kwiat, P.G., Optical simulation of quantum logic (1998) Phys. Rev. A, 57, pp. R1477-R1480
  • Spreeuw, R.J.C., A classical analogy of entanglement (1998) Found. Phys., 28, pp. 361-374
  • Spreeuw, R.J.C., (2001) Phys. Rev. A, 63, p. 062302
  • Bhattacharya, N., Van Linden Vanden Heuvell, H.B., Spreeuw, R.J.C., Implementation of quantum search algorithm using classical Fourier optics (2002) Phys. Rev. Lett., 88, p. 137901
  • Puentes, G., La Mela, C., Ledesma, S., Iemmi, C., Paz, J.P., Saraceno, M., Optical simulation of quantum algorithms using programmable liquid-crystal displays (2004) Phys. Rev. A, 69, p. 042319
  • Francisco, D., Iemmi, C., Paz, J.P., Ledesma, S., Optical simulation of the quantum Hadamard operator (2006) Opt. Commun., 268, pp. 340-345
  • Francisco, D., Iemmi, C., Paz, J.P., Ledesma, S., Simulating a quantum walk with classical optics (2006) Phys. Rev. A, 74, p. 052327
  • Francisco, D., Ledesma, S., Classical optics analogy of quantum teleportation (2008) J. Opt. Soc. Am. B, 25, pp. 383-390
  • Fu, J., Si, Z., Tang, S., Deng, J., Classical simulation of quantum entanglement using optical transverse modes in multimode waveguides (2004) Phys. Rev. A, 70, p. 042313
  • Lee, K.F., Thomas, J.E., Experimental simulation of two-particle quantum entanglement using classical fields (2002) Phys. Rev. Lett., 88, p. 097902
  • Einstein, A., Podolsky, B., Rosen, N., Can quantummechanical description of physical reality be considered complete? (1935) Phys. Rev., 47, pp. 777-780
  • Bell, J.S., On the Einstein-Podolsky-Rosen paradox (1964) Physics, 1, pp. 195-200. , (Long Island City, N.Y.)
  • Bell, J.S., (1987) Speakable and Unispeakable in Quantum Mechanics, , reprinted in, Cambridge U. Press
  • Aspect, A., Dalibard, J., Roger, G., Experimental test of Bell's inequalities using time-varying analyzers (1982) Phys. Rev. Lett., 49, pp. 1804-1807
  • Tittel, W., Brendel, J., Zbinden, H., Gisin, N., Violation of Bell inequalities by photons more than 10 km apart (1998) Phys. Rev. Lett., 81, pp. 3563-3566
  • Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A., Violation of Bell's inequality under strict Einstein locality conditions (1998) Phys. Rev. Lett., 81, pp. 5039-5043
  • Aspect, A., Grangier, P., Roger, G., Experimental tests of realistic local theories via Bell's theorem (1981) Phys. Rev. Lett., 47, pp. 460-463
  • Aspect, A., Grangier, P., Roger, G., Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A new violation of Bell's inequalities (1982) Phys. Rev. Lett., 49, pp. 91-94
  • Ou, Z.Y., Mandel, L., Violation of Bell's inequality and classical probability in a two-photon correlation experiment (1988) Phys. Rev. Lett., 61, pp. 50-53
  • Kwiat, P.G., Mattle, K., Weinfurter, H., Zeilinger, A., Sergienko, A.V., Shih, Y.H., New high-intensity source of polarization-entangled photons pair (1995) Phys. Rev. Lett., 75, pp. 4337-4341
  • Greenberger, D.M., Horne, M., Zeilinger, A., Going beyond Bell's theorem (1989) Bell's Theorem, Quantum Theory and Conceptions of the Universe, pp. 73-76. , Kluwer Academic
  • Howell, J.C., Bennink, R.S., Bentley, S.J., Boyd, R.W., Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion (2004) Phys. Rev. Lett., 92, p. 210403
  • Beige, A., Munro, W.J., Knight, P.L., Bell's inequality test with entangled atoms (2000) Phys. Rev. A, 62, p. 052102
  • Souza, A.M., Magalhaes, A., Teles, J., Deazevedo, E.R., Bonagamba, T.J., Oliveira, I.S., Sarthour, R.S., NMR analog of Bell's inequalities violation test (2008) New J. Phys., 10, p. 033020
  • Genovese, M., Research on hidden variable theories: A review of recent progress (2005) Phys. Rep., 413, pp. 319-396
  • Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A., Proposed experiment to test local hidden-variable theories (1969) Phys. Rev. Lett., 23, pp. 880-884
  • Bohr, N., Can quantum-mechanical description of physical reality be considered complete? (1935) Phys. Rev., 48, pp. 696-702
  • Goodman, J.W., (1996) Introduction to Fourier Optics, , McGraw- Hill
  • Nielsen, M., Chuang, I., (2000) Quantum Information and Computation, , Cambridge U. Press
  • Marquez, A., Iemmi, C., Moreno, I., Davis, J.A., Campos, J., Yzuel, M.J., Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays based on a simple physical model (2001) Opt. Eng., 40, pp. 2558-2564. , (Bellingham)

Citas:

---------- APA ----------
Goldin, M.A., Francisco, D. & Ledesma, S. (2010) . Simulating Bell inequality violations with classical optics encoded qubits. Journal of the Optical Society of America B: Optical Physics, 27(4), 779-786.
http://dx.doi.org/10.1364/JOSAB.27.000779
---------- CHICAGO ----------
Goldin, M.A., Francisco, D., Ledesma, S. "Simulating Bell inequality violations with classical optics encoded qubits" . Journal of the Optical Society of America B: Optical Physics 27, no. 4 (2010) : 779-786.
http://dx.doi.org/10.1364/JOSAB.27.000779
---------- MLA ----------
Goldin, M.A., Francisco, D., Ledesma, S. "Simulating Bell inequality violations with classical optics encoded qubits" . Journal of the Optical Society of America B: Optical Physics, vol. 27, no. 4, 2010, pp. 779-786.
http://dx.doi.org/10.1364/JOSAB.27.000779
---------- VANCOUVER ----------
Goldin, M.A., Francisco, D., Ledesma, S. Simulating Bell inequality violations with classical optics encoded qubits. J Opt Soc Am B. 2010;27(4):779-786.
http://dx.doi.org/10.1364/JOSAB.27.000779