Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Transposable elements (TEs) are mobile genetic sequences that can jump around the genome from one location to another, behaving as genomic parasites. TEs have been particularly effective in colonizing mammalian genomes, and such heavy TE load is expected to have conditioned genome evolution. Indeed, studies conducted both at the gene and genome levels have uncovered TE insertions that seem to have been co-opted - or exapted - by providing transcription factor binding sites (TFBSs) that serve as promoters and enhancers, leading to the hypothesis that TE exaptation is a major factor in the evolution of gene regulation. Here, we critically review the evidence for exaptation of TE-derived sequences as TFBSs, promoters, enhancers, and silencers/insulators both at the gene and genome levels. We classify the functional impact attributed to TE insertions into four categories of increasing complexity and argue that so far very few studies have conclusively demonstrated exaptation of TEs as transcriptional regulatory regions. We also contend that many genome-wide studies dealing with TE exaptation in recent lineages of mammals are still inconclusive and that the hypothesis of rapid transcriptional regulatory rewiring mediated by TE mobilization must be taken with caution. Finally, we suggest experimental approaches that may help attributing higher-order functions to candidate exapted TEs. © The Author 2013. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

Registro:

Documento: Artículo
Título:Exaptation of transposable elements into novel Cis-regulatory elements: Is the evidence always strong?
Autor:De Souza, F.S.J.; Franchini, L.F.; Rubinstein, M.
Filiación:Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:enhancer; exaptation; gene expression; mobile element; cis acting element; transcription factor; binding site; enhancer region; gene expression; gene insertion; genetic transcription; promoter region; regulatory sequence; review; transposon; enhancer; exaptation; gene expression; mobile element; Animals; Cell Line; DNA Transposable Elements; Embryo, Mammalian; Enhancer Elements, Genetic; Gene Expression Regulation; Humans; Mice; Phylogeny; Regulatory Sequences, Nucleic Acid
Año:2013
Volumen:30
Número:6
Página de inicio:1239
Página de fin:1251
DOI: http://dx.doi.org/10.1093/molbev/mst045
Título revista:Molecular Biology and Evolution
Título revista abreviado:Mol. Biol. Evol.
ISSN:07374038
CODEN:MBEVE
CAS:DNA Transposable Elements
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07374038_v30_n6_p1239_DeSouza

Referencias:

  • Ahituv, N., Zhu, Y., Visel, A., Holt, A., Afzal, V., Pennacchio, L.A., Rubin, E.M., Deletion of ultraconserved elements yields viable mice (2007) PLoS Biol., 5, pp. e234
  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J Mol Biol., 215, pp. 403-410
  • Ariza-Cosano, A., Visel, A., Pennacchio, L.A., Fraser, H.B., Go'mez-Skarmeta, J.L., Irimia, M., Bessa, J., Differences in enhancer activity in mouse and zebrafish reporter assays are often associated with changes in gene expression (2012) BMC Genomics, 13, p. 713
  • Bejerano, G., Lowe, C.B., Ahituv, N., King, B., Siepel, A., Salama, S.R., Rubin, E.M., Haussler, D., A distal enhancer and an ultraconserved exon are derived from a novel retroposon (2006) Nature, 441, pp. 87-90
  • Bièche, I., Laurent, A., Laurendeau, I., Duret, L., Giovangrandi, Y., Frendo, J.L., Olivi, M., Vidaud, M., Placenta-specific INSL4 expression is mediated by a human endogenous retrovirus element (2003) Biol Reprod., 68, pp. 1422-1429
  • Boffelli, D., McAuliffe, J., Ovcharenko, D., Lewis, K.D., Ovcharenko, I., Pachter, L., Rubin, E.M., Phylogenetic shadowing of primate sequences to find functional regions of the human genome (2003) Science, 299, pp. 1391-1394
  • Böhne, A., Brunet, F., Galiana-Arnoux, D., Schultheis, C., Volff, J.-N., Transposable elements as drivers of genomic and biological diversity in vertebrates (2008) Chromosome Res., 16, pp. 203-215
  • Bourque, G., Transposable elements in gene regulation and in the evolution of vertebrate genomes (2009) Curr Opin Genet Dev., 19, pp. 607-612
  • Bourque, G., Leong, B., Vega, V.B., Evolution of the mammalian transcription factor binding repertoire via transposable elements (2008) Genome Res., 18, pp. 1752-1762. , (11 Co-authors)
  • Britten, R.J., Transposable element insertions have strongly affected human evolution (2010) Proc Natl Acad Sci U S A., 107, pp. 19945-19948
  • Brosius, J., The contribution of RNAs and retroposition to evolutionary novelties (2003) Genetica, 118, pp. 99-116
  • Brosius, J., Gould, S.J., On genomenclature a comprehensive (and respectful) taxonomy for pseudogenes and other "junk DNA (1992) Proc Natl Acad Sci U S A., 89, pp. 10706-10710
  • Carroll, S.B., Evo-devo and an expanding evolutionary syn thesis a genetic theory of morphological evolution (2008) Cell, 134, pp. 25-36
  • Churakov, G., Sadasivuni, M.K., Rosenbloom, K.R., Huchon, D., Brosius, J., Schmitz, J., Rodent evolution: Back to the root (2010) Mol Biol Evol., 27, pp. 1315-1326
  • Cohen, C.J., Lock, W.M., Mager, D.L., Endogenous retroviral LTRs as promoters for human genes: A critical assessment (2009) Gene, 448, pp. 105-114
  • Costas, J., Naveira, H., Evolutionary history of the human endogenous retrovirus family ERV9 (2000) Mol Biol Evol., 17, pp. 320-330
  • De Souza, F.S., Santangelo, A.M., Bumaschny, V.F., Avale, M.E., Smart, J., Low, M.J., Rubinstein, M., Identification of neuronal enhancers of the proopiomelanocortin gene by transgenic mouse analysis and phylogenetic footprinting (2005) Mol Cell Biol., 25, pp. 3076-3086
  • Doolittle, W.F., Sapienza, C., Selfish genes, the phenotype paradigm and genome evolution (1980) Nature, 284, pp. 601-603
  • Doolittle, W.F., Is junk DNA bunk? A critique of ENCODE (2013) Proc Natl Acad Sci U S A., 110, pp. 5294-5300
  • Eddy, S.R., The C-value paradox, junk DNA and ENCODE (2012) Curr Biol., 22, pp. R898-R899
  • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project (2007) Nature, 447, pp. 799-816. , ENCODE Project Consortium
  • Emera, D., Casola, C., Lynch, V.J., Wildman, D.E., Agnew, D., Wagner, G.P., Convergent evolution of endometrial prolactin expression in primates, mice, and elephants through the independent recruitment of transposable elements (2012) Mol Biol Evol., 29, pp. 239-247
  • Emera, D., Wagner, G.P., Transformation of a transposon into a derived prolactin promoter with function during human pregnancy (2012) Proc Natl Acad Sci U S A., 109, pp. 11246-11251
  • Farnham, P.J., Insights from genomic profiling of transcription factors (2009) Nat Rev Genet., 10, pp. 605-616
  • Faulkner, G.J., Kimura, Y., Daub, C.O., The regulated retrotransposon transcriptome of mammalian cells (2009) Nat Genet., 41, pp. 563-571. , (22 Co-authors)
  • Feschotte, C., Transposable elements and the evolution of regulatory networks (2008) Nat Rev Genet., 9, pp. 397-405
  • Franchini, L.F., De Souza, F.S., Low, M.J., Rubinstein, M., Positive selection of co-opted mobile genetic elements in a mammalian gene: If you can't beat them, join them (2012) Mob Genet Elements., 2, pp. 106-109
  • Franchini, L.F., Lo'pez-Leal, R., Nasif, S., Beati, P., Gelman, D.M., Low, M.J., De Souza, F.S., Rubinstein, M., Convergent evolution of two mammalian neuronal enhancers by sequential exaptation of unrelated retroposons (2011) Proc Natl Acad Sci U S A., 108, pp. 15270-15275
  • Frankel, N., Davis, G.K., Vargas, D., Wang, S., Payre, F., Stern, D.L., Phenotypic robustness conferred by apparently redundant transcriptional enhancers (2010) Nature, 466, pp. 490-493
  • Gaszner, M., Felsenfeld, G., Insulators: Exploiting transcriptional and epigenetic mechanisms (2006) Nat Rev Genet., 7, pp. 703-713
  • Gentles, A.J., Wakefield, M.J., Kohany, O., Gu, W., Batzer, M.A., Pollock, D.D., Jurka, J., Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica (2007) Genome Res., 17, pp. 992-1004
  • Gilbert, N., Labuda, D., CORE-SINEs: Eukaryotic short interspersed retroposing elements with common sequence motifs (1999) Proc Natl Acad Sci U S A., 96, pp. 2869-2874
  • Gilbert, N., Labuda, D., Evolutionary inventions and continuity of CORE-SINEs in mammals (2000) J Mol Biol., 298, pp. 365-377
  • Gombart, A.F., Saito, T., Koeffler, H.P., Exaptation of an ancient Alu short interspersed element provides a highly conserved vitamin D-mediated innate immune response in humans and primates (2009) BMC Genomics, 10, p. 321
  • Graur, D., Zheng, Y., Price, N., Azevedo, R.B., Zufall, R.A., Elhaik, E., On the immortality of television sets function in the human genome according to the evolution-free gospel of encode (2013) Genome Biol Evol., 5, pp. 578-590
  • Herpin, A., Braasch, I., Kraeussling, M., Schmidt, C., Thoma, E.C., Nakamura, S., Tanaka, M., Schartl, M., Transcriptional rewiring of the sex determining dmrt1 gene duplicate by transposable elements (2010) PLoS Genet., 6, pp. e1000844
  • Huby, T., Afzal, V., Doucet, C., Lawn, R.M., Gong, E.L., Chapman, M.J., Thillet, J., Rubin, E.M., Regulation of the expression of the apolipoprotein(a) gene: Evidence for a regulatory role of the 5' distal apolipoprotein(a) transcription control region enhancer in yeast artificial chromosome transgenic mice (2003) Arterioscler Thromb Vasc Biol., 23, pp. 1633-1639
  • Huda, A., Tyagi, E., Marino-Ramírez, L., Bowen, N.J., Jjingo, D., Jordan, I.K., Prediction of transposable element derived enhancers using chromatin modification profiles (2011) PLoS One, 6, pp. e27513
  • Johnson, R., Gamblin, R.J., Ooi, L., Bruce, A.W., Donaldson, I.J., Westhead, D.R., Wood, I.C., Buckley, N.J., Identification of the REST regulon reveals extensive transposable element-mediated binding site duplication (2006) Nucleic Acids Res., 34, pp. 3862-3877
  • Jordan, I.K., Rogozin, I.B., Glazko, G.V., Koonin, E.V., Origin of a substantial fraction of human regulatory sequences from transposable elements (2003) Trends Genet., 19, pp. 68-72
  • Jurka, J., Kapitonov, V.V., Pavlicek, A., Klonowski, P., Kohany, O., Walichiewicz, J., Repbase update, a database of eukaryotic repetitive elements (2005) Cytogenet Genome Res., 110, pp. 462-467
  • Kent, W.J., BLAT - The BLAST-like alignment tool (2002) Genome Res., 12, pp. 656-664
  • Kunarso, G., Chia, N.Y., Jeyakani, J., Hwang, C., Lu, X., Chan, Y.S., Ng, H.H., Bourque, G., Transposable elements have rewired the core regulatory network of human embryonic stem cells (2010) Nat Genet., 42, pp. 631-634
  • Laperriere, D., Wang, T.T., White, J.H., Mader, S., Widespread Alu repeat-driven expansion of consensus DR2 retinoic acid response elements during primate evolution (2007) BMC Genomics, 8, p. 23
  • Lindblad-Toh, K., Garber, M., Zuk, O., A highresolution map of human evolutionary constraint using 29 mammals (2011) Nature, 478, pp. 476-482. , (90 Co-authors)
  • Ling, J., Pi, W., Bollag, R., Zeng, S., Keskintepe, M., Saliman, H., Krantz, S., Tuan, D., The solitary long terminal repeats of ERV-9 endogenous retrovirus are conserved during primate evolution and possess enhancer activities in embryonic and hematopoietic cells (2002) J Virol., 76, pp. 2410-2423
  • Lowe, C.B., Bejerano, G., Haussler, D., Thousands of humanmobile element fragments undergo strong purifying selection near developmental genes (2007) Proc Natl Acad Sci U S A., 104, pp. 8005-8010
  • Lowe, C.B., Haussler, D., 29 mammalian genomes reveal novel exaptations of mobile elements for likely regulatory functions in the human genome (2012) PLoS One, 7, pp. e43128
  • Ludwig, M.Z., Functional evolution of noncoding DNA (2002) Curr Opin Genet Dev., 12, pp. 634-639
  • Lunter, G., Ponting, C.P., Hein, J., Genome-wide identification of human functional DNA using a neutral indel model (2006) PLoS Comput Biol., 2, pp. e5
  • Lunyak, V.V., Prefontaine, G.G., Núnez, E., Developmentally regulated activation of a SINE B2 repeat as a domain boundary in organogenesis (2007) Science, 317, pp. 248-251. , (14 Co-authors)
  • Lynch, M., The evolution of genetic networks by non-adaptive processes (2007) Nat Rev Genet., 8, pp. 803-813
  • Lynch, M., Conery, J.S., The origins of genome complexity (2003) Science, 302, pp. 1401-1404
  • Lynch, V.J., Leclerc, R.D., May, G., Wagner, G.P., Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals (2011) Nat Genet., 43, pp. 1154-1159
  • Mason, C.E., Shu, F.J., Wang, C., Session, R.M., Kallen, R.G., Sidell, N., Yu, T., Kallen, C.B., Location analysis for the estrogen receptor-alpha reveals binding to diverse ERE sequences and widespread binding within repetitive DNA elements (2010) Nucleic Acids Res., 38, pp. 2355-2368
  • McClintock, B., Controlling elements and the gene (1956) Cold Spring Harb Symp Quant Biol., 21, pp. 197-216
  • Meader, S., Ponting, C.P., Lunter, G., Massive turnover of functional sequence in human and other mammalian genomes (2010) Genome Res., 20, pp. 1335-1343
  • Medstrand, P., Van De Lagemaat, L.N., Dunn, C.A., Landry, J.R., Svenback, D., Mager, D.L., Impact of transposable elements on the evolution of mammalian gene regulation (2005) Cytogenet Genome Res., 110, pp. 342-352
  • Micale, L., Loviglio, M.N., Manzoni, M., A fishspecific transposable element shapes the repertoire of p53 target genes in zebrafish (2012) PLoS One, 7, pp. e46642. , (11 Co-authors)
  • Mikkelsen, T.S., Wakefield, M.J., Aken, B., Genome of themarsupial Monodelphis domestica reveals innovation in non-coding sequences (2007) Nature, 447, pp. 167-177. , (64 Co-authors)
  • Naito, K., Zhang, F., Tsukiyama, T., Saito, H., Hancock, C.N., Richardson, A.O., Okumoto, Y., Wessler, S.R., Unexpected consequences of a sudden and massive transposon amplification on rice gene expression (2009) Nature, 461, pp. 1130-1134
  • Nakanishi, A., Kobayashi, N., Suzuki-Hirano, A., Nishihara, H., Sasaki, T., Hirakawa, M., Sumiyama, K., Okada, N., A SINEderived element constitutes a unique modular enhancer for mammalian diencephalic Fgf8 (2012) PLoS One, 7, pp. e43785
  • Niu, D.K., Jiang, L., Can ENCODE tell us how much junk DNA we carry in our genome? (2013) Biochem Biophys Res Commun., 430, pp. 1340-1343
  • Okada, N., Sasaki, T., Shimogori, T., Nishihara, H., Emergence of mammals by emergency: Exaptation (2010) Genes Cells., 15, pp. 801-812
  • Oliver, K.R., Greene, W.K., Transposable elements: Powerful facilitators of evolution (2009) Bioessays, 31, pp. 703-714
  • Oliver, K.R., Greene, W.K., Mobile DNA and the TE-Thrust hypo thesis: Supporting evidence from the primates (2011) Mob DNA., 2, p. 8
  • Orgel, L.E., Crick, F.H., Selfish DNA: The ultimate parasite (1980) Nature, 288, pp. 645-646
  • Phillips, J.E., Corces, V.G., CTCF: Master weaver of the genome (2009) Cell, 137, pp. 1194-1211
  • Pi, W., Yang, Z., Wang, J., The LTR enhancer of ERV-9 human endogenous retrovirus is active in oocytes and progenitor cells in transgenic zebrafish and humans (2004) Proc Natl Acad Sci U S A., 101, pp. 805-810. , (11 Co-authors)
  • Pi, W., Zhu, X., Wu, M., Wang, Y., Fulzele, S., Eroglu, A., Ling, J., Tuan, D., Long-range function of an intergenic retrotransposon (2010) Proc Natl Acad Sci U S A., 107, pp. 12992-12997
  • Reynolds, W.F., Kumar, A.P., Piedrafita, F.J., The human myeloperoxidase gene is regulated by LXR and PPARalpha ligands (2006) Biochem Biophys Res Commun., 349, pp. 846-854
  • Roma'n, A.C., Benitez, D.A., Carvajal-Gonzalez, J.M., Fernandez-Salguero, P.M., Genome-wide B1 retrotransposon binds the transcription factors dioxin receptor and Slug and regulates gene expression in vivo (2008) Proc Natl Acad Sci U S A., 105, pp. 1632-1637
  • Roma'n, A.C., Gonza'lez-Rico, F.J., Moltó, E., Dioxin receptor and SLUG transcription factors regulate the insulator activity of B1 SINE retrotransposons via an RNA polymerase switch (2011) Genome Res., 21, pp. 422-432. , (12 Co-authors)
  • Romanish, M.T., Lock, W.M., Van De Lagemaat, L.N., Dunn, C.A., Mager, D.L., Repeated recruitment of LTR retrotransposons as promoters by the anti-apoptotic locus NAIP during mammalian evolution (2007) PLoS Genet., 3, pp. e10
  • Romanish, M.T., Nakamura, H., Lai, C.B., Wang, Y., Mager, D.L., A novel protein isoform of the multicopy human NAIP gene derives from intragenic Alu SINE promoters (2009) PLoS One, 4, pp. e5761
  • Santangelo, A.M., De Souza, F.S., Franchini, L.F., Bumaschny, V.F., Low, M.J., Rubinstein, M., Ancient exaptation of a CORE-SINE retroposon into a highly conserved mammalian neuronal enhancer of the proopiomelanocortin gene (2007) PLoS Genet., 3, pp. 1813-1826
  • Sasaki, T., Nishihara, H., Hirakawa, M., Possible involvement of SINEs in mammalian-specific brain formation (2008) Proc Natl Acad Sci U S A., 105, pp. 4220-4225. , (12 Co-authors)
  • Serdobova, I.M., Kramerov, D.A., Short retroposons of the B2 superfamily: Evolution and application for the study of rodent phylogeny (1998) J Mol Evol., 46, pp. 202-214
  • Silva, J.C., Shabalina, S.A., Harris, D.G., Spouge, J.L., Kondrashovi, A.S., Conserved fragments of transposable elements in intergenic regions: Evidence for widespread recruitment of MIR- and L2-derived sequences within the mouse and human genomes (2003) Genet Res., 82, pp. 1-18
  • Smit, A.F., Identification of a new, abundant superfamily of mammalian LTR-transposons (1993) Nucleic Acids Res., 21, pp. 1863-1872
  • Smith, A.M., Sanchez, M.J., Follows, G.A., Kinston, S., Donaldson, I.J., Green, A.R., Göttgens, B., A novel mode of enhancer evolution: The Tal1 stem cell enhancer recruited a MIR element to specifically boost its activity (2008) Genome Res., 18, pp. 1422-1432
  • Studer, A., Zhao, Q., Ross-Ibarra, J., Doebley, J., Identification of a functional transposon insertion in the maize domestication gene tb1 (2011) Nat Genet., 43, pp. 1160-1163
  • Tashiro, K., Teissier, A., Kobayashi, N., A mammalian conserved element derived from SINE displays enhancer properties recapitulating Satb2 expression in early-born callosal projection neurons (2011) PLoS One, 6, pp. e28497. , (13 Co-authors)
  • Taube, J.H., Allton, K., Duncan, S.A., Shen, L., Barton, M.C., Foxa1 functions as a pioneer transcription factor at transposable elements to activate Afp during differentiation of embryonic stem cells (2010) J Biol Chem., 285, pp. 16135-16144
  • Thomson, S.J., Goh, F.G., Banks, H., Krausgruber, T., Kotenko, S.V., Foxwell, B.M., Udalova, I.A., The role of transposable elements in the regulation of IFN-lambda1 gene expression (2009) Proc Natl Acad Sci U S A., 106, pp. 11564-11569
  • Van De Lagemaat, L.N., Landry, J.R., Mager, D.L., Medstrand, P., Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions (2003) Trends Genet., 19, pp. 530-536
  • Visel, A., Bristow, J., Pennacchio, L.A., Enhancer identification through comparative genomics (2007) Semin Cell Dev Biol., 18, pp. 140-152
  • Wagner, A., Neutralism and selectionism: A network-based reconciliation (2008) Nat Rev Genet., 9, pp. 965-974
  • Wang, T., Zeng, J., Lowe, C.B., Sellers, R.G., Salama, S.R., Yang, M., Burgess, S.M., Haussler, D., Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53 (2007) Proc Natl Acad Sci U S A., 104, pp. 18613-18618
  • Ward, L.D., Kellis, M., Evidence of abundant purifying selection in humans for recently acquired regulatory functions (2012) Science, 337, pp. 1675-1678
  • Willoughby, D.A., Vilalta, A., Oshima, R.G., An Alu element from the K18 gene confers position-independent expression in transgenic mice (2000) J Biol Chem., 275, pp. 759-768
  • Xie, D., Chen, C.C., Ptaszek, L.M., Xiao, S., Cao, X., Fang, F., Ng, H.H., Zhong, S., Rewirable gene regulatory networks in the preimplantation embryonic development of three mammalian species (2010) Genome Res., 20, pp. 804-815
  • Xie, X., Kamal, M., Lander, E.S., A family of conserved noncoding elements derived from an ancient transposable element (2006) Proc Natl Acad Sci U S A., 103, pp. 11659-11664
  • Yang, Z., Boffelli, D., Boonmark, N., Schwartz, K., Lawn, R., Apolipoprotein(a) gene enhancer resides within a LINE element (1998) J Biol Chem., 273, pp. 891-897

Citas:

---------- APA ----------
De Souza, F.S.J., Franchini, L.F. & Rubinstein, M. (2013) . Exaptation of transposable elements into novel Cis-regulatory elements: Is the evidence always strong?. Molecular Biology and Evolution, 30(6), 1239-1251.
http://dx.doi.org/10.1093/molbev/mst045
---------- CHICAGO ----------
De Souza, F.S.J., Franchini, L.F., Rubinstein, M. "Exaptation of transposable elements into novel Cis-regulatory elements: Is the evidence always strong?" . Molecular Biology and Evolution 30, no. 6 (2013) : 1239-1251.
http://dx.doi.org/10.1093/molbev/mst045
---------- MLA ----------
De Souza, F.S.J., Franchini, L.F., Rubinstein, M. "Exaptation of transposable elements into novel Cis-regulatory elements: Is the evidence always strong?" . Molecular Biology and Evolution, vol. 30, no. 6, 2013, pp. 1239-1251.
http://dx.doi.org/10.1093/molbev/mst045
---------- VANCOUVER ----------
De Souza, F.S.J., Franchini, L.F., Rubinstein, M. Exaptation of transposable elements into novel Cis-regulatory elements: Is the evidence always strong?. Mol. Biol. Evol. 2013;30(6):1239-1251.
http://dx.doi.org/10.1093/molbev/mst045