Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The Asr2 gene encodes a putative transcription factor that is up-regulated in leaves and roots of tomato plants exposed to water-deficit stress. This gene was first cloned and characterized in a cultivar of commercial tomato (Lycopersicon esculentum cv, Ailsa Craig). In this work, we report the complete coding sequences of the orthologous Asr2 genes in six wild tomato lineages: L. hirsutum, L. cheesmanii, L. escutentum v. cerasiforme, L. chilense, L. peruviamml v. humifusum and L. peruvianum f. glandulosum. Estimates of the Ka/Ks ratio (ω) in pairwise comparisons within the genus Lycopersicon were equal or greater than 1 (a signature of adaptive evolution) when involving L. chilense and L. peruvianum v, humifusum. Interestingly, these two species are distinct from the others in their adaptation to dry habitats. We also mapped the detected substitutions onto a phylogenetic tree of the genus Lycopersicon. Remarkably, there are two and three amino acid substitutions, which contrast with the absence of synonymous substitutions along the terminal branches leading to L. chilense and L. peruvianum v. humifusum, respectively. Likelihood ratio tests confirmed that ω values in the branches leading to these species are significantly different from the remaining branches of the tree. Moreover, inferred changes in the branches leading to these species that inhabit dry areas are nonconservative and may be associated with dramatic alterations in ASR2 protein conformation, In this work, we demonstrate accelerated rates of amino acid substitutions in the Asr2 gene of tomato lineages living in dry habitats, thus giving support to the hypothesis of adaptive Darwinian evolution.

Registro:

Documento: Artículo
Título:Adaptive Evolution of the Water Stress-Induced Gene Asr2 in Lycopersicon Species Dwelling in Arid Habitats
Autor:Frankel, N.; Hasson, E.; Iusem, N.D.; Rossi, M.S.
Filiación:Lab. de Fisiologia y Biologia Molec., Departamento de Fisiología, Universidad de Buenos Aires, Buenos Aires, Argentina
Departamento de Ecología, Genética y Evolución, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Adaptive evolution; Asr genes; Lycopersicon; Tomato; Water stress; ASR2 protein; gene product; transcription factor; unclassified drug; adaptive evolution; amino acid substitution; article; Asr2 gene; desert; evolutionary adaptation; gene expression; Lycopersicon cheesmanii; Lycopersicon chilense; Lycopersicon esculentum cersiforme; Lycopersicon hirsutum; Lycopersicon peruvianum glandulosum; Lycopersicon peruvianum humifusum; molecular cloning; nonhuman; nucleic acid base substitution; nucleotide sequence; phylogenetic tree; plant genetics; protein conformation; statistical model; tomato; water deficit; water stress; Amino Acid Sequence; Amino Acid Substitution; Base Sequence; Environment; Evolution; Likelihood Functions; Lycopersicon esculentum; Molecular Sequence Data; Phylogeny; Plant Proteins; Species Specificity; Darwinia; Embryophyta; Lycopersicon; Lycopersicon cheesmanii; Lycopersicon chilense; Lycopersicon esculentum; Lycopersicon hirsutum; Lycopersicon peruvianum var. humifusum
Año:2003
Volumen:20
Número:12
Página de inicio:1955
Página de fin:1962
DOI: http://dx.doi.org/10.1093/molbev/msg214
Título revista:Molecular Biology and Evolution
Título revista abreviado:Mol. Biol. Evol.
ISSN:07374038
CODEN:MBEVE
CAS:Asr2 protein, Lycopersicon esculentum; Plant Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07374038_v20_n12_p1955_Frankel

Referencias:

  • Alba, R., Kelmenson, P.M., Cordonnier-Pratt, M.M., Pratt, L.H., The phytochrome gene family in tomato and the rapid differential evolution of this family in Angiosperms (2000) Mol. Biol. Evol., 17, pp. 362-373
  • Atanassova, R., Leterrier, M., Gaillard, C., Agasse, A., Sagot, E., Coutos-Thévenot, P., Delrot, S., Sugar-regulated expression of a putative hexose transport gene in grape (2003) Plant Physiol., 131, pp. 326-334
  • Baudry, E., Kerdelhué, C., Innan, H., Stephan, W., Species and recombination effects on DNA variability in the tomato genus (2001) Genetics, 158, pp. 1725-1735
  • Bishop, J.G., Dean, A.M., Mitchell-Olds, T., Rapid evolution in plant chitinases: Molecular targets of selection in plant-pathogen coevolution (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 5322-5327
  • Bohnert, H.J., Sheveleva, E., Plant stress adaptationsmaking metabolism move (1998) Curr. Opin. Plant Biol., 1, pp. 267-274
  • Boyer, J.S., Plant productivity and environment (1982) Science, 218, pp. 444-448
  • Chen, R.D., Campeau, N., Greer, A.F., Bellemare, G., Tabaeizadeh, Z., Sequence of a novel abscisic acid- and drought-induced cDNA from wild tomato (Lycopersicon chilense) (1993) Plant Physiol., 103, p. 301
  • Chen, R.D., Yu, L.X., Greer, A.F., Cheriti, H., Tabaeizadeh, Z., Isolation of an osmotic stress- and abscisic acid-induced gene encoding an acidic endochitinase from Lycopersicon chilense (1994) Mol. Gen. Genet., 245, pp. 195-202
  • Elliott, K.J., Butler, W.O., Dickinson, C.D., Konno, Y., Vedvick, T.S., Isolation and characterization of fruit vacuolar invertase genes from two tomato species and temporal differences in mRNA levels during fruit ripening (1993) Plant Mol. Biol., 21, pp. 515-524
  • Endo, T., Ikeo, K., Gojobori, T., Large-scale search for genes on which positive selection may operate (1996) Mol. Biol. Evol., 13, pp. 685-690
  • Finkelstein, R.R., Gampala, S.S., Rock, C.D., Abscisic acid signaling in seeds and seedlings (2002) Plant Cell, 14 (SUPPL.), pp. S15-S45
  • Goldman, N., Yang, Z., A codon-based model of nucleotide substitution for protein-coding DNA sequences (1994) Mol. Biol. Evol., 11, pp. 725-736
  • Hall, T.A., BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT (1999) Nucleic Acids Symp. Ser., 41, pp. 95-98
  • Hare, P.D., Cress, W.A., Van Staden, J., Dissecting the roles of osmolyte accumulation during stress (1998) Plant Cell Environ., 21, pp. 535-553
  • Hillis, D.M., Huelsenbeck, J.P., Signal, noise and reliability in molecular phylogenetic analysis (1992) J. Hered., 83, pp. 189-195
  • Hsieh, T.H., Lee, J.T., Charng, Y.Y., Chan, M.T., Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress (2002) Plant Physiol., 130, pp. 618-626
  • Hughes, A.L., Adaptive evolution after gene duplication (2002) Trends Genet., 18, pp. 433-434
  • Ingram, J., Bartels, D., The molecular basis of dehydration tolerance in plants (1996) Annu. Rev. Plant Physiol. Plant Mol. Biol., 47, pp. 377-403
  • Iusem, N.D., Bartholomew, D.M., Hitz, W.D., Scolnik, P.A., Tomato transcript induced in water stress and ripening (1993) Plant Physiol., 102, pp. 1353-1354
  • Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K., Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor (1999) Nat. Biotech., 17, pp. 287-291
  • Kreitman, M., Methods to detect selection in populations with applications to the human (2000) Annu. Rev. Genomics Hum. Genet., 1, pp. 539-559
  • Kondo, K., Yamamoto, M., Matton, D.P., Sato, T., Hirai, M., Norioka, S., Hattori, T., Kowyama, Y., Cultivated tomato has defects in both S-RNase and HT genes required for stylar function of self-incompatibility (2002) Plant J., 29, pp. 627-636
  • Kumar, S., Tamura, K., Jakobsen, I.B., Nei, M., (2001) MEGA2: Molecular Evolutionary Genetics Analysis Software, , Distributed by the authors, Arizona State University, Tempe, Ariz
  • Liberles, D.A., Schreiber, D.R., Govindajaran, S., Chamberlin, S.G., Benner, S.A., The adaptive evolution database (TAED) (2001) Genome Biol., 2. , RESEARCH0028.1-0028.6
  • Marshall, J.A., Knapp, S., Davey, M.R., Power, J.B., Cocking, E.C., Bennett, M.D., Cox, A.V., Molecular systematics of Solanum section Lycopersicum (Lycopersicon) using the nuclear ITS rDNA region (2001) Theor. App. Genet., 103, pp. 1216-1222
  • Maskin, L., Gudesblat, G.E., Moreno, J.E., Carrari, F.O., Frankel, N., Sambade, A., Rossi, M., Iusem, N.D., Differential expression of the members of the Asr gene family in tomato (Lycopersicon esculentum) (2001) Plant Sci., 161, pp. 739-746
  • Miller, J.C., Tanksley, S.D., RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon (1990) Theor. Appl. Genet., 80, pp. 437-448
  • Nei, M., Gojobori, T., Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions (1986) Mol. Biol. Evol., 3, pp. 418-426
  • Oliver, M.J., Tuba, Z., Mishler, B.D., Evolution of dessication tolerance in land plants (2000) Plant Ecol., 151, pp. 85-100
  • Peralta, I.E., Spooner, D.M., Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. Secton Lycopersicon [Mill.] Wettst. Subsection Lycopersicon) (2001) Am. J. Bot., 88, pp. 1888-1902
  • Prusiner, S.B., Prion diseases and the BSE crisis (1997) Science, 278, pp. 245-251
  • Qiu, Y.L., Palmer, J.D., Phylogeny of early land plants: Insights from genes and genomes (1999) Trends Plant Sci., 4, pp. 26-30
  • Rossi, M.M., Iusem, N.D., Tomato genomic clone homologous to a gene encoding an ABA-induced protein (1994) Plant Physiol., 104, pp. 1073-1074
  • Rick, C.M., Potential genetic resources in tomato species: Clues from observations in native habitats (1973) Genes, Enzymes, and Populations, pp. 255-269. , A. M. Srb, ed. Plenum, New York
  • Biosystematic studies in Lycopersicon and closely related species of Solanum (1979) The Biology and Taxonomy of Solanaceae, pp. 667-677. , J. G. Hawkes, R. N. Lester, and A. D. Skelding, eds. Linnean Society Symposium Series 7. Academic Press, New York
  • Schneider, A., Salamini, F., Gebhardt, C., Expression patterns and promoter activity of the cold-regulated gene ci21A of potato (1997) Plant Physiol., 113, pp. 335-345
  • Shinozaki, K., Yamaguchi-Shinozaki, K., Gene expression and signal transduction in water-stress response (1997) Plant Physiol., 115, pp. 327-334
  • Skriver, K., Mundy, J., Gene expression in response to abscisic acid and osmotic stress (1990) Plant Cell, 2, pp. 503-512
  • Swofford, D.L., (1998) PAUP*: Phylogenetic Analysis Using Parsimony (*and other Methods). Version 4.0 Beta, , Sinauer Associates, Sunderland, Mass
  • Taylor, I.B., Biosystematics of the tomato (1986) The Tomato Crop: A Scientific Basis for Improvement, pp. 1-34. , J. G. Atherton and J. Rudich, eds. Chapman and Hall, London
  • Thompson, J.D., Gibson, T.J., Pleuniak, F., Janemougin, E., Higgins, D.G., The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools (1997) Nucleic Acids Res., 24, pp. 4876-4882
  • Vacquier, V.D., Swanson, W.J., Lee, Y.-H., Positive Darwinian selection on two homologous fertilization proteins: What is the selective pressure driving their divergence? (1997) J. Mol. Evol., 44 (SUPPL. 1), pp. S15-S22
  • Van Der Hoeven, R., Ronning, C., Giovannoni, J., Martin, G., Tanksley, S., Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing (2002) Plant Cell, 14, pp. 1441-1456
  • Wallis, M., Episodic evolution of protein hormones in mammals (2001) J. Mol. Evol., 53, pp. 10-18
  • Wei, T., O'Connell, M.A., Structure and characterization of a putative drought-inducible H1 histone gene (1996) Plant Mol. Biol., 30, pp. 255-268
  • Yang, Z., PAML: A program package for phylogenetic analysis by maximum likelihood (1997) Comput. Appl. Biosci., 13, pp. 555-556
  • Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution (1998) Mol. Biol. Evol., 15, pp. 568-573
  • Yang, Z., Bielawski, P., Statistical methods for detecting molecular adaptation (2000) Trends Ecol. Evol., 1512, pp. 496-501
  • Zhang, J., Nei, M., Accuracies of ancestral amino acid sequences inferred by the parsimony, likelihood, and distance methods (1997) J. Mol. Evol., 44 (SUPPL. 1), pp. S139-S146
  • Zhang, J., Zhang, Y., Rosenberg, H.F., Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey (2002) Nat. Genet., 30, pp. 411-415
  • Zhu, J.-K., Salt and drought stress signal transduction in plants (2002) Annu. Rev. Plant Biol., 53, pp. 247-273

Citas:

---------- APA ----------
Frankel, N., Hasson, E., Iusem, N.D. & Rossi, M.S. (2003) . Adaptive Evolution of the Water Stress-Induced Gene Asr2 in Lycopersicon Species Dwelling in Arid Habitats. Molecular Biology and Evolution, 20(12), 1955-1962.
http://dx.doi.org/10.1093/molbev/msg214
---------- CHICAGO ----------
Frankel, N., Hasson, E., Iusem, N.D., Rossi, M.S. "Adaptive Evolution of the Water Stress-Induced Gene Asr2 in Lycopersicon Species Dwelling in Arid Habitats" . Molecular Biology and Evolution 20, no. 12 (2003) : 1955-1962.
http://dx.doi.org/10.1093/molbev/msg214
---------- MLA ----------
Frankel, N., Hasson, E., Iusem, N.D., Rossi, M.S. "Adaptive Evolution of the Water Stress-Induced Gene Asr2 in Lycopersicon Species Dwelling in Arid Habitats" . Molecular Biology and Evolution, vol. 20, no. 12, 2003, pp. 1955-1962.
http://dx.doi.org/10.1093/molbev/msg214
---------- VANCOUVER ----------
Frankel, N., Hasson, E., Iusem, N.D., Rossi, M.S. Adaptive Evolution of the Water Stress-Induced Gene Asr2 in Lycopersicon Species Dwelling in Arid Habitats. Mol. Biol. Evol. 2003;20(12):1955-1962.
http://dx.doi.org/10.1093/molbev/msg214