Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

An analytical isotherm equation that can be applied to water vapor-biopolymer systems, was developed. The model describes the multilayer adsorption on fractal surfaces with energetic interactions adsorbate-adsorbate (measure in terms of free energy) different from that of bulk water. Assuming explicit mathematical functionalities for the variation of the free energy with the number of adsorbed layers, it is possible to evaluate the effect of the adsorbate-adsorbate interactions on the adsorption capacity of solids of high degree of surface irregularity. For those surfaces with relatively low degree of irregularity (D values slightly larger than 2), it results that the free energy variation with the layer number in the multilayer region affects considerably the sorption capacity of the adsorbent, even for water activities lower than those corresponding to the monolayer moisture content. This effect becomes less marked as the fractal dimension increases (D approaching to 3), being relevant for water activities much larger than those corresponding to the monolayer value, only. The isotherm was tested, using published experimental equilibrium data of various biopolymers. An analytical isotherm equation that can be applied to water vapor-biopolymer systems, was developed. The model describes the multilayer adsorption on fractal surfaces with energetic interactions adsorbate-adsorbate (measure in terms of free energy) different from that of bulk water. Assuming explicit mathematical functionalities for the variation of the free energy with the number of adsorbed layers, it is possible to evaluate the effect of the adsorbate-adsorbate interactions on the adsorption capacity of solids of high degree of surface irregularity. For those surfaces with relatively low degree of irregularity (D values slightly larger than 2), it results that the free energy variation with the layer number in the multilayer region affects considerably the sorption capacity of the adsorbent, even for water activities lower than those corresponding to the monolayer moisture content. This effect becomes less marked as the fractal dimension increases (D approaching to 3), being relevant for water activities much larger than those corresponding to the monolayer value, only. The isotherm was tested, using published experimental equilibrium data of various biopolymers.

Registro:

Documento: Artículo
Título:Multilayer adsorption on fractal surfaces: Effect of the adsorbate-adsorbate interactions on the sorptional equilibrium
Autor:Aguerre, R.J.; Tolaba, M.P.; Suárez, C.
Ciudad:New York
Filiación:Departamento de Tecnología, Universidad Nacional de Luján, Cruces Rutas 5 y 7, C.C. 221, (6700) Luján, Argentina
Departamento de Industrias, Fac. de Ciencias Exactas y Naturales, Ciudad Universitaria, (1428) Buenos Aires, Argentina
Palabras clave:Adsorbate-adsorbate interactions on fractal surfaces; Fractal isotherm; Fractality of biopolymers; Adsorption isotherms; Biopolymers; Multilayers; Numerical methods; Phase equilibria; Sorption; Surface phenomena; Water; Adsorbate adsorbate interactions; Fractal dimensions; Fractal surfaces; Sorptional equilibrium; Adsorption; Adsorption; Drying; fractal analysis
Año:1999
Volumen:17
Número:4-5
Página de inicio:869
Página de fin:881
DOI: http://dx.doi.org/10.1080/07373939908917575
Título revista:Drying Technology
Título revista abreviado:Dry. Technol.
ISSN:07373937
CODEN:DRTED
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07373937_v17_n4-5_p869_Aguerre

Referencias:

  • Adler, P.M., Flow in porous media (1990) The Fractal Approach to Heterogeneous Chemistry. Surfaces, Colloids, Polymers, , Ed. D. Avnir, The Hebrew University of Jerusalem, Israel
  • Aguerre, R.J., Viollaz, P.E., Suárez, C., A fractal isotherm for multilayer adsorption in foods (1996) Journal of Food Engineering, 30, pp. 227-231
  • Bizot, H., (1983) Physical Properties of Foods, p. 43. , London and New York: Applied Science Publishers
  • Brunauer, S., Emmett, P.H., Teller, J., Adsorption of gases in multimolecular layers (1938) J. Am. Chem. Soc., 60, pp. 309-319
  • Drost-Hansen, W., Structure of water solid interfaces (1969) Industrial and Eng. Chem., 61, pp. 10-47
  • Fripiat, J.J., Porosity and adsorption isotherms (1990) The Fractal Approach to Heterogeneous Chemistry. Surfaces, Colloids, Polymers, , Ed. D. Avnir, The Hebrew University of Jerusalem, Israel
  • Fripiat, J.J., Gatineau, L., Van Damme, H., Multilayer physical adsorption on fractal surfaces (1986) Langmuir, 2, pp. 562-567
  • Kutarov, V.V., Kats, B.M., Determination of the fractal dimension of ion-exchange fibers from adsorption data (1993) Russian Journal of Physical Chemistry, 67, pp. 1666-1668
  • Lomauro, C.L., Bakshi, A.S., Labuza, T.P., Evaluation of food moisture sorption isotherm equations, Part II: Milk, coffee, tea, nut, oilseeds, spices and starchy foods (1985) Lebensmittel - Wissenschaft und- Technologie, 18, pp. 111-115
  • Nagai, T., Yano, T., Fractal structure of deformed potato starch and its sorption characteristics (1990) Journal of Food Science, 55 (5), pp. 1334-1337
  • Nanri, L.R., Douglas, W.J.M., Vera, J.H., Equilibrium moisture content of cellulosic materials at high temperature (1994) Drying Technology, 12 (4), pp. 823-847
  • Pfeifer, P., Avnir, D., Chemistry in noninteger dimensions between two and three (1983) J. Chem. Phys., 79, p. 3558
  • Pfeifer, P., Obert, M., Cole, M.W., Fractal BET and FHH theories of adsorption: A comparative study (1989) Proc. Roy. Soc. Lond., A423, pp. 169-188
  • Van Den Berg, C., (1981) Vapour Sorption Equilibria and Other Water-Starch Interactions: A Physico-Chemical Approach, , Chapter IV. Agricultural University Wageningen, The Netherlands
  • Wang, F., Li, S., Determination of the surface fractal dimension for porous media by capillary condensation (1997) Ind. Eng. Chem. Res., 36, pp. 1598-1603
  • Weisser, H., (1986) Influence of Temperature on Sorption Isotherms. Food Engineering and Process Applications, 1. , Transport Phenomena. Le Maguer, M. and Jelen, P. (eds.). Elsevier Applied Science Publishers, London - New York
  • Wolf, W., Spiess, W.E.L., Jung, G., (1985) Sorption Isotherm and Water Activity of Food Materials, , Elsevier Science Publishing Co., New York

Citas:

---------- APA ----------
Aguerre, R.J., Tolaba, M.P. & Suárez, C. (1999) . Multilayer adsorption on fractal surfaces: Effect of the adsorbate-adsorbate interactions on the sorptional equilibrium. Drying Technology, 17(4-5), 869-881.
http://dx.doi.org/10.1080/07373939908917575
---------- CHICAGO ----------
Aguerre, R.J., Tolaba, M.P., Suárez, C. "Multilayer adsorption on fractal surfaces: Effect of the adsorbate-adsorbate interactions on the sorptional equilibrium" . Drying Technology 17, no. 4-5 (1999) : 869-881.
http://dx.doi.org/10.1080/07373939908917575
---------- MLA ----------
Aguerre, R.J., Tolaba, M.P., Suárez, C. "Multilayer adsorption on fractal surfaces: Effect of the adsorbate-adsorbate interactions on the sorptional equilibrium" . Drying Technology, vol. 17, no. 4-5, 1999, pp. 869-881.
http://dx.doi.org/10.1080/07373939908917575
---------- VANCOUVER ----------
Aguerre, R.J., Tolaba, M.P., Suárez, C. Multilayer adsorption on fractal surfaces: Effect of the adsorbate-adsorbate interactions on the sorptional equilibrium. Dry. Technol. 1999;17(4-5):869-881.
http://dx.doi.org/10.1080/07373939908917575