Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

A mathematical model is developed to simulate the drying of a hygroscopic porous solid. The model, based on the gradient of moisture concentration per unit volume as driving force, takes into account the migration of water within the solid by diffusion and the evaporation at the interface. A mathematical equation for diffusion in a slab with three dimensional shrinkage has been derived, assuming that the magnitude of shrinkage is equal to the volume of water evaporated. The resulting diffusion equation and the heat balance equation for infinite thermal conductivity were solved numerically with temperature dependent diffusion coefficient and convective boundary conditions. The dependence of the desorption isotherm with temperature is also considered. Combination of all these factors in a single model provides a tool that is effective in predicting drying behavior and also useful in exploring and understanding the impact of important variables on the drying process. © 1995, Taylor & Francis Group, LLC. All rights reserved.

Registro:

Documento: Artículo
Título:Drying simulation of a solid slab with three dimensional shrinkage
Autor:Rovedo, C.O.; Suarez, C.; Viollaz, P.E.
Filiación:Departamento de Industrias Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria (1428), Buenos Aires, Argentina
Palabras clave:drying simulation; multidirectional shrinkage
Año:1995
Volumen:13
Número:1-2
Página de inicio:371
Página de fin:393
DOI: http://dx.doi.org/10.1080/07373939508916958
Título revista:Drying Technology
Título revista abreviado:Dry. Technol.
ISSN:07373937
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07373937_v13_n1-2_p371_Rovedo

Referencias:

  • Aguerre, R.J., Suarez, C., viollaz, P.E., Enthalpy-entropy compensation in sorption phenomena: application to the prediction of the effect of temperature on food isotherms (1986) J. Food Science, 51 (6), p. 1547
  • Alzamora, S.M., Chirife, J., Some factors controlling the kinetic of moisture movement during avocado dehydration (1980) J. of Food Science, 45, pp. 1649-1651
  • Beard, J.N., Jr., Rosen, H-N., Adesanya, A.B., Temperature distributions and heat transfer during the drying of lumber (1983) Drying Technology, 1, pp. 117-140
  • Bimbenet, J.J., Daudin, J.D., Wolff, E., Air drying kinetics of biological particles (1985), pp. 178-185. , Drying ‘85, Ed. by R. Toei and A, S. Mujumdar, Hemisphere Publishing Corp.); Crank, J., Mathematics of Diffusion (1956), p. 224. , Oxford Clarendon Press, Oxford; Chen, P., Pei, D.C.T., A mathematical model of drying processes (1989) Int. J. Heat and Mass Transfer, 32, pp. 297-310
  • Chiang, W.C., Petersen, J.N., Experimental measurements of temperature and moisture profiles during apple drying (1986), 2, pp. 479-486. , Drying’86, Ed. by A. S, Mujumdar, Hemisphere Publishing Corporation, Washington, New York, London; Fortes, M., Okos, M.R., Barret, J.R., Heat and mass transfer analysis of intra-kernel wheat drying and rewetting (1981) J. Agric. Eng. Res, 26, pp. 109-125
  • Furuta, T., Tsukada, T., Hayakawaf, K.I., Heat and moisture with thermodynamically interactive fluxes and volumetric changes III (1992) Computer simulation. Transactions of the ASAE, 35, pp. 1553-1557
  • Hawlader, M.N.A., Uddin, H.S., Ho, J.C., Teng, A.B.W., Drying characteristics of tomatoes (1991) J. of Food Engineering, 14, pp. 259-268
  • King, J., Rates of moisture sorption and desorption in porous, dried foodstuffs (1968) J. of Food Technology, 22, p. 165
  • Marousis, S.N., Karathanos, V.T., Saravacos, G.D., Effect of sugars on the water diffusivity in hydrated granular starches (1989) J. of Food Science, 54, pp. 1496-1552
  • Hujumdar, A.S., Advances in Drying (1983), 2. , Hemisphere Publishing, Washington D.C; Nissan, A.H., George, H.H., Jr., Bolles, T.V., Mechanism of drying thick porous bodies during the falling-rate period III. Analytical treatment of macroporous systems (1967) AIChE Journal, 6, pp. 406-410
  • Prausnitz, J.M., Eckert, C.A., Orye, R.V., O/Connell, J.P., Computer calculations for multicomponent vapor-liquid equilibria (1967), p. 219. , Prentice-Hall Int. Series in The Physical and Chemical Engineering Sciences. Englewood Cliffs, N.J; Rose116, C., Canellas, J., Siroal, S., Berna, A., Simple mathematical model to predict the drying rates of potatoes (1992) J. Agric. Food Chem., 40 (2374), p. 2378
  • Rovedo, C.O., Transferencia siraultdnea de calor y materia en sistemas con cambio de volumen: aplicacidn al secado de placas de papa (1994), Unpublished PhD thesis, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina; Shakya, R.B., Flink, M.J., Dehydration of potato: 3. Influence of process parameters on drying behavior for natural convection solar drying conditions (1986) Journal of Food Processing and Preservation, 10, pp. 127-143
  • Sherwood, T.K., The drying of solids (1929) Ind Eng. Chem., 21, p. 12
  • Suarez, C., Viollaz, P-E., Shrinkage effect on drying behavior of potato slabs (1991) J. of Food Engineering, 13, pp. 103-114
  • Susuki, K., Kubota, K., Hasegawa, T., Hosakaf, H., Shrinkage in dehydration of root vegetables (1976) Journal of Food Science, 41, pp. 1189-1193
  • Treybal, R.E., Operaciones de transferencia de masa (1980), pp. 90-268. , (2nd. edition), edited by McGraw-Hill Book Co; Vaccarezza, L.M., Lombardi, J-L., Chirife, J., Heat transfer effects on drying rate of food dehydration (1974) The Canadian J. of Chemical Engineering, 52, pp. 576-579
  • Vanegas, G.K., Karathanos, V.T., Prediction of the effective moisture diffusivity in gelatinized food systems (1993) J. of Food Engineering, 18, pp. 159-179
  • Viollaz, P.E., Diffusion in systems with multidirectional shrinkage (1987) Lat Am. J. Chem. Eng. Appl. Chem, 17, pp. 215-326
  • Viollaz, P.E., Suarez, C., An equation for diffusion in shrinking or swelling bodies (1984) J. of Polymer Science: Polymer Physics Edition, 22, pp. 875-879
  • Viollaz, P.E., Suarez, C., Drying of shrinking bodies (1985) AIChE J, 31, pp. 1566-1568
  • Waananen, K.M., Litchfield, J.B., Okos, M.R., Classification of drying models for porous solids (1993) Drying Technology, 11, pp. 1-40
  • Wang, N., Brennan, J.G., The influence of moisture content and temperature on the specific heat of potato measured by differential scanning calorimetry (1993) J. of Food Engineering, 19, pp. 303-310
  • Wolff, E., Bimbenet, J.J., Internal and superficial temperature of solids during drying (1986) Drying’86, 1, pp. 77-84. , Ed. by A.S. Mujumdar, Hemisphere Publishing Corporation, Washington, New York, London

Citas:

---------- APA ----------
Rovedo, C.O., Suarez, C. & Viollaz, P.E. (1995) . Drying simulation of a solid slab with three dimensional shrinkage. Drying Technology, 13(1-2), 371-393.
http://dx.doi.org/10.1080/07373939508916958
---------- CHICAGO ----------
Rovedo, C.O., Suarez, C., Viollaz, P.E. "Drying simulation of a solid slab with three dimensional shrinkage" . Drying Technology 13, no. 1-2 (1995) : 371-393.
http://dx.doi.org/10.1080/07373939508916958
---------- MLA ----------
Rovedo, C.O., Suarez, C., Viollaz, P.E. "Drying simulation of a solid slab with three dimensional shrinkage" . Drying Technology, vol. 13, no. 1-2, 1995, pp. 371-393.
http://dx.doi.org/10.1080/07373939508916958
---------- VANCOUVER ----------
Rovedo, C.O., Suarez, C., Viollaz, P.E. Drying simulation of a solid slab with three dimensional shrinkage. Dry. Technol. 1995;13(1-2):371-393.
http://dx.doi.org/10.1080/07373939508916958