Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The adiabatic conformational surfaces of sixteen 4′,6′,6-trideoxy-α-D-(1→3)-linked disaccharides were obtained using the MM3 force-field at two different dielectric constants. Calculations were carried out on disaccharides with different configurations at C2, C4 and C2′, which are neighbors to the glycosidic linkage, as well as that of the linked carbon (C3). The resulting maps were similar, indicating that the substituents do not play a major role in the conformational features of these disaccharides. However, the preferred minimum conformation and the flexibility were found to be slightly dependant on the configurations of the carbons. Although equatorial bonds and vicinal axial substituents tend to increase the overall flexibility, it was found that these factors can have a cross over effect; i.e., an axial hydroxyl group on C2 may decrease the flexibility if the glycosyl group on C3 is also axial. The relative stabilities of the minimal energy conformations of the 16 compounds also show deviations of the predicted increased stabilities of equatorially substituted compounds over axially substituted ones: these deviations occur mainly for the C2 substituent.

Registro:

Documento: Artículo
Título:Potential energy surfaces of α-(1→3)-linked disaccharides calculated with the MM3 force-field
Autor:Stortz, C.A.; Cerezo, A.S.
Filiación:Depto. de Quimica Organica-CIHIDECAR, Fac. de Ciencias Exact. y Naturales, Universidad de Buenos Aires, Pabellón 2, 1428 Buenos Aires, Argentina
Palabras clave:Axial; Conformational analysis; Disaccharide maps; Equatorial; MM3; disaccharide; hydroxyl group; article; conformation; dielectric constant; mathematical computing; synthesis
Año:2002
Volumen:21
Número:5
Página de inicio:355
Página de fin:371
DOI: http://dx.doi.org/10.1081/CAR-120014900
Título revista:Journal of Carbohydrate Chemistry
Título revista abreviado:J. Carbohydr. Chem.
ISSN:07328303
CODEN:JCACD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07328303_v21_n5_p355_Stortz

Referencias:

  • French, A.D., Brady, J.W., Computer modeling of carbohydrates (1990) ACS Symp. Ser., 430, pp. 1-19
  • Engelsen, S.B., Rasmussen, K., Conformations of disaccharides by empirical force field calculations. Part V: Conformational maps of β-gentiobiose in an optimized consistent force field (1993) Int. J. Biol. Macromol., 15 (1), pp. 56-62
  • French, A.D., Dowd, M.K., Exploration of disaccharide conformations by molecular mechanics (1993) J. Mol. Struct., Theochem., 286, pp. 183-201
  • Lemieux, R.U., Koto, S., The conformational properties of glycosidic linkages (1974) Tetrahedron, 30, pp. 1933-1944
  • Thøgersen, H., Lemieux, R.U., Bock, K., Meyer, B., Further justification for the exo-anomeric effect. Conformational analysis based on nuclear magnetic resonance spectroscopy of oligosaccharides (1982) Can. J. Chem., 60, pp. 44-57
  • Melberg, S., Rasmussen, K., Conformations of disaccharides by empirical force-field calculations. Part I, β-maltose (1979) Carbohydr. Res., 69, pp. 27-38
  • Melberg, S., Rasmussen, K., Conformations of disaccharides by empirical force-field calculations. Part II, β-cellobiose (1979) Carbohydr. Res., 71, pp. 25-34
  • Melberg, S., Rasmussen, K., Conformations of disaccharides by empirical. Force-field calculations. Part III, β-gentiobiose (1980) Carbohydr. Res., 78, pp. 215-224
  • Tvaroška, I., Pérez, S., Conformational energy calculations for oligosaccharides: A comparison of methods and a strategy of calculation (1986) Carbohydr. Res., 149 (2), pp. 389-410
  • French, A.D., Rigid- and relaxed-residue conformational analyses of cellobiose using the computer program MM2 (1988) Biopolymers, 27 (9), pp. 1519-1525
  • Ha, S.N., Madsen, L.J., Brady, J.W., Conformational analysis and molecular dynamics simulations of maltose (1988) Biopolymers, 27 (12), pp. 1927-1952
  • French, A.D., Comparison of rigid and relaxed conformational maps for cellobiose and maltose (1989) Carbohydr. Res., 188, pp. 206-211
  • Tran, V., Buléon, A., Imberty, A., Pérez, S., Relaxed potential energy surfaces of maltose (1989) Biopolymers, 28, pp. 679-690
  • Imberty, A., Tran, V., Pérez, S., Relaxed potential energy surfaces of N-linked oligosaccharides: The mannose-α-(1→3)-mannose case (1989) J. Comput. Chem., 11 (2), pp. 205-216
  • Allinger, N.L., Yuh, Y.H., Lii, J.-H., Molecular mechanics. The MM3 force field for hydrocarbons (1989) J. Am. Chem. Soc., 111 (23), pp. 8551-8566
  • Allinger, N.L., Rahman, M., Lii, J.-H., A molecular mechanics force field (MM3) for alcohols and ethers (1990) J. Am. Chem. Soc., 112 (23), pp. 8293-8307
  • Koca, J., Pérez, S., Imberty, A., Conformational analysis and flexibility of carbohydrates using the CICADA approach with MM3 (1995) J. Comput. Chem., 16 (3), pp. 296-310
  • Koca, J., Potential energy hypersurface and molecular flexibility (1993) J. Mol. Struct., 291, pp. 255-269
  • Dowd, M.K., Reilly, P.J., French, A.D., Conformational analysis of trehalose disaccharides and analogues using MM3 (1992) J. Comput. Chem., 13 (1), pp. 102-114
  • Dowd, M.K., French, A.D., Reilly, P.J., Conformational analysis of the anomeric forms of sophorose, laminaribiose, and cellobiose using MM3 (1992) Carbohydr. Res., 233, pp. 15-34
  • Dowd, M.K., French, A.D., Reilly, P.J., Molecular mechanics modeling of α-(1→2), α-(1→3), and α-(1→6)-linked mannosyl disaccharides with MM3(92) (1995) J. Carbohydr. Chem., 14 (4-5), pp. 589-600
  • Dowd, M.K., Zeng, J., French, A.D., Reilly, P.J., Conformational analysis of the anomeric forms of kojibiose, nigerose, and maltose using MM3 (1992) Carbohydr. Res., 230, pp. 223-244
  • Stortz, C.A., Disaccharide conformational maps: How adiabatic is an adiabatic map? (1999) Carbohydr. Res., 322, pp. 77-86
  • French, A.D., Kelterer, A.-M., Johnson, G.P., Dowd, M.K., Cramer, C.J., HF/6-31G* energy surfaces for disaccharide analogs (2001) J. Comput. Chem., 22 (1), pp. 65-78
  • French, A.D., Kelterer, A.-M., Cramer, C.J., Johnson, G.P., Dowd, M.K., A QM/MM analysis of the conformations of crystalline sucrose moieties (2000) Carbohydr. Res., 326, pp. 305-322
  • French, A.D., Kelterer, A.-M., Johnson, G.P., Dowd, M.K., Cramer, C.J., Constructing and evaluating energy surfaces of crystalline disaccharides (2000) J. Mol. Graph. Model., 18 (2), pp. 95-107
  • Rees, D.A., (1977) Polysaccharide Shapes, p. 51. , Chapman & Hall: London
  • Stortz, C.A., Cerezo, A.S., Conformational analysis of neocarrabiose and its sulfated and/or pyruvylated derivatives using the MM3 force-field (2000) J. Carbohydr. Chem., 19 (9), pp. 1115-1130
  • Stortz, C.A., Cerezo, A.S., Conformational analysis of sulfated α-(1→3)-linked D-galactobioses using the MM3 force-field (1998) J. Carbohydr. Chem., 17 (9), pp. 1405-1419
  • MM3 (96) (1997) Bull. QCPE, 17 (1), p. 3
  • Engelsen, S.B., Rasmussen, K., β-lactose in the view of a CFF-optimized force field (1997) J. Carbohydr. Chem., 16 (6), pp. 773-788
  • Neuman, A., Avenel, D., Arène, F., Gillier-Pandraud, H., Pougny, J.-R., Sinaÿ, P., Structure cristalline du méthyl-3-O-α-D-glucopyranosyl-α-D-glucopyranoside (méthyl-α-nigéroside) (1980) Carbohydr. Res., 80 (1), pp. 15-24
  • Luger, P., Vangehr, K., Bock, K., Paulsen, H., Bestimmung der konformation der 2-acetamido-3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-desoxy-α-D- galactopyranosyl)-1,4,6-tri-O-acetyl-2-desoxy-α-D-galactopyranose durch röntgenstrukturanalyse, NOE-messungen und HSEA-berechnungen (1983) Carbohydr. Res., 117, pp. 23-38
  • Warin, V., Baert, F., Fouret, R., Strecker, G., Spik, G., Fournet, B., Montreuil, J., The crystal and molecular structure of O-α-D-mannopyranosyl-(1→3)-O-β-D-mannopyranosyl-(1→4)- 2-acetamido-2-deoxy-α-D-glucopyranose (1979) Carbohydr. Res., 76, pp. 11-22
  • Rees, D.A., Scott, W.E., Polysaccharide conformation. Part VI. Computer model-building for linear and branched pyranoglycans. Correlations with biological function. Preliminary assessment of inter-residue forces in aqueous solution. Further interpretation of optical rotation in terms of chain conformation (1971) J. Chem. Soc., B, pp. 469-479
  • Kochetkov, N.K., Chizhov, O.S., Shashkov, A.S., Dependence of 13C chemical shifts on the spatial interaction of protons, and its application in structural and conformational studies of oligo- and polysaccharides (1984) Carbohydr. Res., 133, pp. 173-185
  • Shashkov, A.S., Lipkind, G.M., Knirel, Yu.A., Kochetkov, N.K., Stereochemical factors determining the effects of glycosylation on the 13C chemical shifts in carbohydrates (1988) Magn. Reson. Chem., 26, pp. 735-747
  • Bock, K., Brignole, A., Sigurskjold, B.W., Conformational dependence of 13C nuclear magnetic resonance chemical shifts in oligosaccharides (1986) J. Chem. Soc., Perkin Trans. 2, pp. 1711-1713

Citas:

---------- APA ----------
Stortz, C.A. & Cerezo, A.S. (2002) . Potential energy surfaces of α-(1→3)-linked disaccharides calculated with the MM3 force-field. Journal of Carbohydrate Chemistry, 21(5), 355-371.
http://dx.doi.org/10.1081/CAR-120014900
---------- CHICAGO ----------
Stortz, C.A., Cerezo, A.S. "Potential energy surfaces of α-(1→3)-linked disaccharides calculated with the MM3 force-field" . Journal of Carbohydrate Chemistry 21, no. 5 (2002) : 355-371.
http://dx.doi.org/10.1081/CAR-120014900
---------- MLA ----------
Stortz, C.A., Cerezo, A.S. "Potential energy surfaces of α-(1→3)-linked disaccharides calculated with the MM3 force-field" . Journal of Carbohydrate Chemistry, vol. 21, no. 5, 2002, pp. 355-371.
http://dx.doi.org/10.1081/CAR-120014900
---------- VANCOUVER ----------
Stortz, C.A., Cerezo, A.S. Potential energy surfaces of α-(1→3)-linked disaccharides calculated with the MM3 force-field. J. Carbohydr. Chem. 2002;21(5):355-371.
http://dx.doi.org/10.1081/CAR-120014900