Artículo

Grotz, E.; Tateosian, N.; Amiano, N.; Cagel, M.; Bernabeu, E.; Chiappetta, D.A.; Moretton, M.A. "Nanotechnology in Tuberculosis: State of the Art and the Challenges Ahead" (2018) Pharmaceutical Research. 35(11)
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Tuberculosis (TB) remains as the second most-deadly infection right behind the HIV/AIDS. Actually, in 2016, TB incidence was estimated in 10.4 million cases. Although an efficient and low-cost TB pharmacotherapy has been available for the last 50 years, the development of multi- and extra-drug-resistant Mycobacterium tuberculosis (Mtb) strains has put on the spot the necessity of improved TB regimens. In this framework, this review article presents the main relevant research outcomes of nanotechnology in TB. The novel delivery systems for antituberculosis drugs have been discussed. Moreover, the active-targeted nanomedicines to the Mtb reservoirs enlighten the possibility to eradicate low-replicant mycobacteria and diminish latent TB. Finally, we present an overview of the TB socio-economic impact and the cost-related features of TB regimens associated with the use of nanoformulations. © 2018, Springer Science+Business Media, LLC, part of Springer Nature.

Registro:

Documento: Artículo
Título:Nanotechnology in Tuberculosis: State of the Art and the Challenges Ahead
Autor:Grotz, E.; Tateosian, N.; Amiano, N.; Cagel, M.; Bernabeu, E.; Chiappetta, D.A.; Moretton, M.A.
Filiación:Facultad de Farmacia y Bioquímica, Cátedra de Tecnología Farmacéutica I, Universidad de Buenos Aires, Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Universitaria, Buenos Aires, Argentina
Palabras clave:active targeting; nanotechnology; respirable nanocarriers; tuberculosis; liposome; nanoparticle; niosome; tuberculostatic agent; tuberculostatic agent; cost; disease carrier; disease eradication; drug delivery system; drug therapy; human; incidence; micelle; nanomedicine; nanotechnology; nonhuman; polymerization; prevalence; priority journal; randomized controlled trial (topic); Review; socioeconomics; tuberculosis; animal; antibiotic resistance; chemistry; drug development; drug effect; Mycobacterium tuberculosis; nanotechnology; pathology; procedures; tuberculosis; Animals; Antitubercular Agents; Drug Delivery Systems; Drug Discovery; Drug Resistance, Bacterial; Humans; Liposomes; Micelles; Mycobacterium tuberculosis; Nanomedicine; Nanoparticles; Nanotechnology; Tuberculosis
Año:2018
Volumen:35
Número:11
DOI: http://dx.doi.org/10.1007/s11095-018-2497-z
Título revista:Pharmaceutical Research
Título revista abreviado:Pharm. Res.
ISSN:07248741
CODEN:PHREE
CAS:Antitubercular Agents; Liposomes; Micelles
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07248741_v35_n11_p_Grotz

Referencias:

  • (2017) Global Tuberculosis Report 2017, , http://www.who.int/tb/publications/global_report/gtbr2017_main_text.pdf, Available from
  • Peña, D.A., Rovetta, A.I., Hernández Del Pino, R.E., Amiano, N.O., Pasquinelli, V., Pellegrini, J.M., Mycobacterium tuberculosis dormancy antigen differentiates latently infected Bacillus Calmette-Guerin vaccinated individuals (2015) EBioMedicine, 2 (8), pp. 882-888
  • WHO Global Tuberculosis Programme (1994) TB: A Global Emergency, WHO Report on the TB Epidemic, , http://www.who.int/iris/handle/10665/58749, Geneva: World Health Organization, Available from
  • Porcel, J.M., Leung, C.C., Restrepo, M.I., Lee, P., Year in review 2011: respiratory infections, tuberculosis, pleural diseases, bronchoscopic intervention and imaging (2012) Respirology, 17 (3), pp. 573-582
  • Treatment of Tuberculosis (2017) Guidelines for Treatment of Drug-Susceptible Tuberculosis and Patient Care, , http://apps.who.int/iris/bitstream/handle/10665/255052/9789241550000-eng.pdf?sequence=1, Update; 2017. Available from
  • Centers for Disease Control and Prevention/Infectious Diseases Society of America. Treatment of tuberculosis (2003) Am J Respir Crit Care Med, 167 (4), pp. 603-662
  • Stewart, G.R.B., Young, D., Tuberculosis: a problem with persistence (2003) Nat Rev Microbiol, 1 (2), pp. 97-105
  • Toossi, Z., Virological and immunological impact of tuberculosis on human immunodeficiency virus type 1 disease (2003) J Infect Dis, 188 (8), pp. 1146-1155
  • Kaufmann, S.H., How can immunology contribute to the control of tuberculosis? (2001) Nat Rev Immunol, 1 (1), pp. 20-30
  • Riley, R.M.W., Nyka, N., Weintock, P., Storey, I., Sultan, M., Wells, W., Aerial dissemination of pulmonary tuberculosis: a two year study of contagion in a tuberculosis ward (1959) Am J Hyg, 142 (1), pp. 185-196
  • Fenton, M.J., Vermeulen, M.W., Immunopathology of tuberculosis: roles of macrophages and monocytes (1996) Infect Immun, 64 (3), pp. 683-690
  • Stenger, S., Rollinghoff, M., Role of cytokines in the innate immune response to intracellular pathogens (2001) Ann Rheum Dis, 60 (3), pp. 43-46
  • Ramakrishnan, L., Revisiting the role of the granuloma in tuberculosis (2012) Nat Rev Immunol, 12 (5), pp. 352-366
  • Hashemian, S.M., Tabarsi, P., Karam, M.B., Kahkouee, S., Marjani, M., Jamaati, H., Radiologic manifestations of pulmonary tuberculosis in patients of intensive care units (2015) Int J Mycobacteriol, 4 (3), pp. 233-238
  • Schnappinger, D., Ehrt, S., Voskuil, M.I., Liu, Y., Mangan, J.A., Monahan, I.M., Transcriptional Adaptation of Mycobacterium tuberculosis within Macrophages: Insights into the Phagosomal Environment (2003) J Exp Med, 198 (5), pp. 693-704
  • Flynn, J.L., Immunology of tuberculosis and implications in vaccine development (2004) Tuberculosis (Edinb), 84 (1-2), pp. 93-101
  • Tateosian, N.L., Pellegrini, J.M., Amiano, N.O., Rolandelli, A., Casco, N., Palmero, D.J., IL17A augments autophagy in Mycobacterium tuberculosis-infected monocytes from patients with active tuberculosis in association with the severity of the disease (2017) Autophagy, 13 (7), pp. 1191-1204
  • Ivanyi, J., Function and potentials of M. tuberculosis epitopes (2014) Front Immunol, 5, p. 107
  • Abbas, A.K., Lichtman, A.H., Pillai, S., (2008) Cellular and Molecular Immunology, , Madrid: Elsevier-Saunders Inc. 6th edition
  • Garcia-Prats, A.J., Willemse, M., Seifart, H.I., Jordaan, A.M., Werely, C.J., Donald, P.R., Acquired drug resistance during inadequate therapy in a young child with tuberculosis (2014) Pediatr Infect Dis J, 33 (8), pp. 883-885
  • Panchagnula, R., Agrawal, S., Ashokraj, Y., Varma, M., Sateesh, K., Bhardwaj, V., Fixed dose combinations for tuberculosis: lessons learned from clinical, formulation and regulatory perspective (2004) Methods Find Exp Clin Pharmacol, 26 (9), pp. 703-772
  • Preziosi, P., Isoniazid: metabolic aspects and toxicological correlates (2007) Curr Drug Metab, 8 (8), pp. 839-851
  • Rivers, E.C., Mancera, R.L., New anti-tuberculosis drugs in clinical trials with novel mechanisms of action (2008) Drug Discov Today, 13 (23-24), pp. 1090-1098
  • Moretton, M.A., Glisoni, R.J., Chiappetta, D.A., Sosnik, A., Molecular implications in the nanoencapsulation of the anti-tuberculosis drug rifampicin within flower-like polymeric micelles (2010) Colloids Surf. B: Biointerfaces, 79 (2), pp. 467-479
  • Gohel, M.C., Sarvaiya, K.G., A novel solid dosage form of rifampicin and isoniazid with improved functionality (2007) AAPS PharmSciTech, 8 (3)
  • El-Ridy, M.S., Mostafa, D.M., Shehab, A., Nasr, E.A., Abd El-Alim, S., Biological evaluation of pyrazinamide liposomes for treatment of Mycobacterium tuberculosis (2007) Int J Pharm, 330 (1-2), pp. 82-88
  • (2018) Latent Tuberculosis Infection: Updated and Consolidated Guidelines for Programmatic Management, , http://apps.who.int/iris/bitstream/handle/10665/260233/9789241550239-eng.pdf?sequence=1, Available from
  • Du Toit, L.C., Pillay, V., Danckwerts, M.P., Tuberculosis chemotherapy: current drug delivery approaches (2006) Respir Res, 7, p. 118
  • (2003) Treatment of Tuberculosis. Guidelines for National Programmes, , http://apps.who.int/iris/bitstream/handle/10665/67890/WHO_CDS_TB_2003.313_eng.pdf?sequence=1, Geneva, World Health Organization, Available from
  • Chang, K.-C., Yew, W.-W., Management of difficult multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis: update 2012 (2013) Respirology, 18 (1), pp. 8-21
  • Pai, M., Behr, M.A., Dowdy, D., Dheda, K., Divangahi, M., Boehme, C.C., Tuberculosis (2016) Nat Rev Dis Primers, 2
  • (2016) Treatment Guidelines for Drug-Resistant Tuberculosis, , http://apps.who.int/iris/bitstream/handle/10665/250125/9789241549639-eng.pdf;jsessionid=8E57A036E76B0B028129B6AC6678C423?sequence=1, update. Available from
  • Caminero, J.A., Scardigli, A., Classification of antituberculosis drugs: a new proposal based on the most recent evidence (2015) Eur Respir J, 46 (4), pp. 887-893
  • Falzon, D., Jaramillo, E., Schünemann, H.J., Arentz, M., Bauer, M., Bayona, J., WHO guidelines for the programmatic management of drug resistant tuberculosis: 2011 update (2011) Eur Respir J, 38 (3), pp. 516-528
  • Tiberi, S., Scardigli, A., Centis, R., D'Ambrosio, L., Muñoz-Torrico, M., Salazar-Lezama, M.Á., Classifying new anti-TB drugs: rationale and future perspectives (2017) Int J Infect Dis, 56, pp. 181-184
  • The use of delamanid in the treatment of multidrug-resistant tuberculosis (2014) Interim Policy Guidance. WHO/HTM/TB2014.23, , http://apps.who.int/iris/bitstream/handle/10665/137334/WHO_HTM_TB_2014.23_eng.pdf?sequence=1, Geneva: World Health Organization, Available from
  • Harausz, E.P., Garcia-Prats, A.J., Seddon, J.A., Schaaf, H.S., Hesseling, A.C., Achar, J., On behalf of the sentinel project on pediatric drug-resistant tuberculosis. New drugs, repurposed drugs, and novel regimens for children with multidrug-resistant tuberculosis: practice-based recommendations (2016) Am J Respir Crit Care Med, 195 (10), pp. 1-58
  • Gler, M.T., Skripconoka, V., Sanchez-Garavito, E., Xiao, H., Cabrera-Rivero, J.L., Vargas-Vasquez, D.E., Delamanid for multidrug-resistant pulmonary tuberculosis (2012) N Engl J Med, 366 (23), pp. 2151-2160
  • Tadolini, M., Lingtsang, R.D., Tiberi, S., Enwerem, M., D'Ambrosio, L., Sadutshang, T.D., First case of extensively drug-resistant tuberculosis treated with both delamanid and bedaquiline (2016) Eur Respir J, 48 (3), pp. 935-938
  • Wallis, R.S., Cardiac safety of extensively drug-resistant tuberculosis regimens including bedaquiline, delamanid and clofazimine (2016) Eur Respir J, 48 (5), pp. 1526-1527
  • Laghari, M., Darwis, Y., Memon, A.H., Khan, A.A., Abdulbaqi, I.M.T., Assi, R.A., Nanoformulations and clinical trial candidates as probably effective and safe therapy for tuberculosis (2016) Trop J Pharm Res, 15 (1), pp. 201-211
  • Bawarski, W.E., Chidlowsky, E., Bharali, D.J., Mousa, S.A., Emerging nanopharmaceuticals (2008) Nanomedicine, 4 (4), pp. 273-282
  • Abed, N., Couvreur, P., Nanocarriers for antibiotics: a promising solution to treat intracellular bacterial infections (2014) Int J Antimicrob Agents, 43 (6), pp. 485-496
  • Changsan, N., Chan, H.K., Separovic, F., Srichana, T., Physicochemical characterization and stability of rifampicin liposome dry powder formulations for inhalation (2009) J Pharm Sci, 98 (2), pp. 628-639
  • Manca, M.L., Sinico, C., Maccioni, A.M., Diez, O., Fadda, A.M., Manconi, M., Composition influence on pulmonary delivery of rifampicin liposomes (2012) Pharmaceutics, 4 (4), pp. 590-606
  • Chimote, G., Banerjee, R., In vitro evaluation of inhalable isoniazid-loaded surfactant liposomes as an adjunct therapy in pulmonary tuberculosis (2010) J Biomed Mater Res B Appl Biomater, 94 (1), pp. 1-10
  • Booysen, L.L., Kalombo, L., Brooks, E., Hansen, R., Gilliland, J., Gruppo, V., In vivo/in vitro pharmacokinetic and pharmacodynamic study of spray-dried poly-(dl-lactic-co-glycolic) acid nanoparticles encapsulating rifampicin and isoniazid (2013) Int J Pharm, 444 (1-2), pp. 10-17
  • Merisko-Liversidge, E., Liversidge, G.G., Cooper, E.R., Nanosizing: a formulation approach for poorly-water-soluble compounds (2003) Eur J Pharm Sci, 18 (2), pp. 113-120
  • Pooja, D., Tunki, L., Kulhari, H., Reddy, B.B., Sistla, R., Characterization, biorecognitive activity and stability of WGA grafted lipid nanostructures for the controlled delivery of rifampicin (2015) Chem Phys Lipids, 193, pp. 11-17
  • Singh, H., Bhandari, R., Kaur, I.P., Encapsulation of rifampicin in a solid lipid nanoparticulate system to limit its degradation and interaction with isoniazid at acidic pH (2013) Int J Pharm, 446 (1-2), pp. 106-111
  • Singh, H., Jindal, S., Singh, Sharma G, Kaur IP. Nano-formulation of rifampicin with enhanced bioavailability: development, characterization and in-vivo safety (2015) Int J Pharm, 485 (1-2), pp. 138-151
  • Vieira, A.C.C., Chaves, L.L., Pinheiro, S., Pinto, S., Pinheiro, M., Lima, S.C., Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis (2018) Int J Pharm, 536 (1), pp. 478-485
  • Banik, N., Hussain, A., Ramteke, A., Sharma, H.K., Maji, T.K., Preparation and evaluation of the effect of particle size on the properties of chitosan-montmorillonite nanoparticles loaded with isoniazid (2012) RSC Adv, 2, pp. 10519-10528
  • Trousil, J., Filippov, S.K., Hrubý, M., Mazel, T., Syrová, Z., Cmarko, D., System with embedded drug release and nanoparticle degradation sensor showing efficient rifampicin delivery into macrophages (2017) Nanomedicine, 13 (1), pp. 307-315
  • Gajendiran, M., Gopi, V., Elangovan, V., Murali, R.V., Balasubramanian, S., Isoniazid loaded core shell nanoparticles derived from PLGA-PEG-PLGA tri-block copolymers: in vitro and in vivo drug release (2013) Colloids Surf B: Biointerfaces, 104, pp. 107-115
  • Pandey, R., Khuller, G.K., Nanoparticle-based oral drug delivery system for an injectable antibiotic - streptomycin. Evaluation in a murine tuberculosis model (2007) Chemotherapy, 53 (6), pp. 437-441
  • Pandey, R., Sharma, A., Zahoor, A., Sharma, S., Khuller, G.K., Prasad, B., Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis (2003) J Antimicrob Chemother, 52 (6), pp. 981-986
  • Ahmad, Z., Sharma, S., Khuller, G.K., Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis (2005) Int J Antimicrob Agents, 26 (4), pp. 298-303
  • Cagel, M., Tesan, F.C., Bernabeu, E., Salgueiro, M.J., Zubillaga, M.B., Moretton, M.A., Polymeric mixed micelles as nanomedicines: achievements and perspectives (2017) Eur J Pharm Biopharm, 113, pp. 211-228
  • Owen, S.C., Chan, D.P.Y., Shoichet, M.S., Polymeric micelle stability (2012) Nano Today, 7, pp. 53-65
  • Moretton, M.A., Höcht, C., Taira, C., Sosnik, A., Rifampicin-loaded ‘flower-like’ polymeric micelles for enhanced oral bioavailability in an extemporaneous liquid fixed-dose combination with isoniazid (2014) Nanomedicine (London), 9 (11), pp. 1635-1650
  • Moretton, M.A., Chiappetta, D.A., Sosnik, A., Cryoprotection-lyophilization and physical stabilization of rifampicin-loaded flower-like polymeric micelles (2012) J R Soc Interface, 9 (68), pp. 487-502
  • Grotz, E., Bernabeu, E., Pappalardo, M., Chiappetta, D.A., Moretton, M.A., Nanoscale Kolliphor® HS 15 micelles to minimize rifampicin selfaggregation in aqueous media (2017) J Drug Deliv Sci Technol, 41, pp. 1-6
  • Praphakar, R.A., Munusamy, M.A., Rajan, M., Development of extended-voyaging anti-oxidant linked amphiphilic polymeric Nanomicelles for anti-tuberculosis drug delivery (2017) Int J Pharm, 524 (1-2), pp. 168-177
  • Upadhyay, S., Khan, I., Gothwal, A., Pachouri, P.K., Bhaskar, N., Gupta, U.D., Conjugated and entrapped HPMA-PLA Nano-polymeric micelles based dual delivery of first line anti TB drugs: improved and safe drug delivery against sensitive and resistant Mycobacterium tuberculosis (2017) Pharm Res, 34 (9), pp. 1944-1955
  • Jain, J.P., Ayen, W.Y., Kumar, N., Self assembling polymers as Polymersomes for drug delivery (2011) Curr Pharm Des, 17 (1), pp. 65-79
  • Chang, H.-Y., Sheng, Y.-J., Tsao, H.-K., Structural and mechanical characteristics of Polymersomes (2014) Soft Matter, 10 (34), pp. 6373-6681
  • Moretton, M.A., Cagel, M., Bernabeu, E., Gonzalez, L., Chiappetta, D.A., Nanopolymersomes as potential carriers for rifampicin pulmonary delivery (2015) Colloids Surf B: Biointerfaces, 136, pp. 1017-1025
  • Moghassemi, S., Hadjizadeh, A., Nano-niosomes as nanoscale drug delivery systems: an illustrated review (2014) J Control Release, 185 (1), pp. 22-36
  • Junyaprasert, V.P., Teeranachaideekul, V., Supaperm, T., Effect of charged and non-ionic membrane additives on physicochemical properties and stability of niosomes (2008) AAPS PharmSciTech, 9 (3), pp. 851-859
  • El-Ridy, M.S., Abdelbary, A., Nasr, E.A., Khalil, R.M., Mostafa, D.M., El-Batal, A.I., Niosomal encapsulation of the antitubercular drug, pyrazinamide (2011) Drug Dev Ind Pharm, 37 (9), pp. 1110-1118
  • El-Ridy, M.S., Yehia, S.A., Kassem, M.A., Mostafa, D.M., Nasr, E.A., Asfour, M.H., Niosomal encapsulation of ethambutol hydrochloride for increasing its efficacy and safety (2015) Drug Delivery, 22 (1), pp. 21-36
  • Mehta, S.K., Jindal, N., Kaur, G., Quantitative investigation, stability and in vitro release studies of anti-TB drugs in triton niosomes (2011) Colloids Surf B: Biointerfaces, 87 (1), pp. 173-179
  • Mehta, S.K., Jindal, N., Formulation of Tyloxapol niosomes for encapsulation, stabilization and dissolution of anti-tubercular drugs (2013) Colloids Surf B: Biointerfaces, 101, pp. 434-441
  • (2016) Frequently Asked Questions about the Implementation of the New WHO Recommendation on the Use of the Shorter MDR-TB Regimen under Programmatic Conditions, , http://www.who.int/tb/areas-of-work/drug-resistanttb/treatment/FAQshorter_MDR_regimen.pdf, Available from
  • Adikwu, E., Deo, O., Fluoroquinolones reported hepatotoxicity (2012) Pharmacology and Pharmacy, 3, pp. 328-336
  • Mustafa, S., Devi, V.K., Pai, R.S., Effect of PEG and water-soluble chitosan coating on moxifloxacin-loaded PLGA long-circulating nanoparticles (2016) Drug Deliv Transl Res, 7 (1), pp. 27-36
  • Sarfraz, M., Shi, W., Gao, Y., Clas, S.D., Roa, W., Bou-Chacra, N., Immune response to antituberculosis drug-loaded gelatin and polyisobutyl-cyanoacrylate nanoparticles in macrophages (2016) Ther Deliv, 7 (4), pp. 213-228
  • Bhardwaj, A., Mehta, S., Yadav, S., Singh, S.K., Grobler, A., Goyal, A.K., Pulmonary delivery of antitubercular drugs using spray-dried lipid – polymer hybrid nanoparticles (2015) Artif Cells Nanomed Biotechnol, 44 (6), pp. 1544-1555
  • Adams, L.B., Sinha, I., Franzblau, S.G., Krahenbuhl, J.L., Mehta, R.T., Effective treatment of acute and chronic murine tuberculosis with liposome-encapsulated Clofazimine (1999) Antimicrob Agents Chemother, 43 (7), pp. 1638-1643
  • Gaidukevich, S.K., Mikulovich, Y.L., Smirnova, T.G., Andreevskaya, S.N., Sorokoumova, G.M., Chernousova, L.N., Antibacterial effects of liposomes containing phospholipid Cardiolipin and fluoroquinolone Levofl oxacin on Mycobacterium tuberculosis with extensive drug resistance (2016) Bull Exp Biol Med, 160 (5), pp. 675-676
  • Breen, R.A., Swaden, L., Ballinger, J., Lipman, M.C., Tuberculosis and HIV co-infection: a practical therapeutic approach (2006) Drugs, 66 (18), pp. 2299-2308
  • (2018) Managing Drug Interactions in the Treatment of Hiv-Related Tuberculosis, , https://www.cdc.gov/tb/publications/guidelines/tb_hiv_drugs/recommendations03.htm, Available from
  • Gaspar, M.M., Cruz, A., Penha, A.F., Reymăo, J., Sousa, A.C., Eleutério, C.V., Rifabutin encapsulated in liposomes exhibits increased therapeutic activity in a model of disseminated tuberculosis (2008) Int J Antimicrob Agents, 31 (1), pp. 37-45
  • (2015) The End TB Strategy, , http://www.who.int/tb/End_TB_brochure.pdf?ua=1, Available from
  • (2018) Interim Guidance on the Use of Bedaquiline to Treat MDR-TB, , http://www.who.int/tb/challenges/mdr/bedaquiline/en/, Available from
  • Field, S.K., Bedaquiline for the treatment of multidrug-resistant tuberculosis: great promise or disappointment? (2015) Ther Adv Chronic Dis, 6 (4), pp. 170-184
  • (2015), https://www.clinicaltrials.gov/ct2/show/NCT02454205?term=bedaquiline&rank=28, Identifier NCT02454205. Available from; (2015) The Evaluation of a Standard Treatment Regimen of Anti-tuberculosis Drugs for Patients With MDR-TB (STREAM), , https://www.clinicaltrials.gov/ct2/show/NCT02409290?term=stream&rank=8, Identifier NCT02409290, Available from
  • (2017) Safety and Efficacy of Various Doses and Treatment Durations of Linezolid plus Bedaquiline and Pretomanid in Participants with Pulmonary TB, XDR-TB, Pre- XDR-TB Or Non-Responsive/Intolerant MDR-TB (Zenix), , https://www.clinicaltrials.gov/ct2/show/NCT03086486?term=bedaquiline&rank=15, Identifier NCT03086486, Available from
  • (2014), https://www.clinicaltrials.gov/ct2/show/NCT02193776?term=bedaquiline&rank=14, A Phase 2 Open Label Partially Randomized Trial to Evaluate the Efficacy, Safety and Tolerability of Combinations of Bedaquiline, Moxifloxacin, PA-824 and Pyrazinamide in Adult Subjects With Drug-Sensitive or Multi Drug-Resistant Pulmonary Tuberculosis. (NC-005), Identifier NCT02193776. Available from; (2013) The Use of Bedaquiline in the Treatment of Multidrug-Resistant Tuberculosis, , http://apps.who.int/iris/bitstream/10665/84879/1/9789241505482_eng.pdf, Available from
  • Ritsema, J.A.S., Herschberg, E.M.A., Borgos, S.E., Løvmo, C., Schmid, R.Y.M., Te Welscher, Y.M., Relationship between polarities of antibiotic and polymer matrix on nanoparticle formulations based on aliphatic polyesters Int J Pharm 2017, , https://doi.org/10.1016/j.ijpharm.2017.11.017, Article in press
  • De Matteis, L., Jary, D., Lucía, A., García-Embid, S., Serrano-Sevilla, I., Pérez, D., New active formulations against M. tuberculosis: Bedaquiline encapsulation in lipid nanoparticles and chitosan nanocapsules (2018) Chem Eng J, 340, pp. 181-191
  • Bertrand, N., Wu, J., Xu, X., Kamaly, N., Farokhzad, O.C., Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology (2014) Adv Drug Deliv Rev, 66, pp. 2-25
  • Traini, D., Young, P.M., Drug delivery for tuberculosis: is inhaled therapy the key to success? (2017) Ther Deliv, 8 (10), pp. 819-821
  • Irache, J.M., Salman, H.H., Gamazo, G., Espuelas, S., Mannose-targeted systems for the delivery of therapeutics (2008) Expert Opin Drug Deliv, 5 (6), pp. 703-724
  • Song, X., Lin, Q., Guo, L., Fu, Y., Han, J., Ke, H., Rifampicin loaded Mannosylated cationic nanostructured lipid carriers for alveolar macrophage-specific delivery (2015) Pharm Res, 32 (5), pp. 1741-1751
  • Vieira, A.C.C., Chaves, L.L., Pinheiro, M., Costa Lima, S.A., Ferreira, D., Bruno Sarmento, B., Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to macrophages (2018) Artif Cells Nanomed Biotechnol, 12, pp. 1-11
  • Maretti, E., Costantino, L., Rustichelli, C., Leo, E., Croce, M.A., Buttini, F., Surface engineering of solid lipid nanoparticle assemblies by methyl α-D-mannopyranoside for the active targeting to macrophages in anti-tuberculosis inhalation therapy (2017) Int J Pharm, 528 (1-2), pp. 440-451
  • Costa, A., Sarmento, B., Seabra, V., Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages (2018) Eur J Pharm Sci, 114, pp. 103-113
  • Moretton, M.A., Chiappetta, D.A., Andrade, F., das Neves J, Ferreira D, Sarmento B, et al. hydrolyzed galactomannan-modified nanoparticles and flower-like polymeric micelles for the active targeting of rifampicin to macrophages (2013) J Biomed Nanotechnol, 9 (6), pp. 1076-1087
  • Madaan, K., Kumar, S., Poonia, N., Lather, V., Pandita, D., Dendrimers in drug delivery and targeting: drug-dendrimer interactions and toxicity issues (2014) J Pharm Bioallied Sci, 6 (3), pp. 139-150
  • Kumar, P.V., Asthana, A., Dutta, T., Jain, N.K., Intracellular macrophage uptake of rifampicin loaded mannosylated dendrimers (2006) J Drug Target, 14 (8), pp. 546-556
  • Katoh, S., Miyagi, T., Taniguchi, H., Matsubara, Y.-I., Kadota, J.-I., Tominaga, A., Cutting edge: an inducible Sialidase regulates the hyaluronic acid binding ability of CD44-bearing human monocytes (1999) J Immunol, 162 (9), pp. 5058-5061
  • Gao, Y., Sarfraz, M.K., Clas, S.D., Roa, W., Löbenberg, R., Hyaluronic acid-tocopherol succinate-based self-assembling micelles for targeted delivery of rifampicin to alveolar macrophages (2015) J Biomed Nanotechnol, 11 (8), pp. 1312-1329
  • (2015) Global TB Report, , http://www.who.int/iris/handle/10665/191102, Available from, Accessed Sept 2018
  • Zwerling, A., Dowdy, D., von Delft, A., Taylor, H., Merritt, M.W., Incorporating social justice and stigma in cost-effectiveness analysis: drug-resistant tuberculosis treatment (2017) Int J Tuberc Lung Dis, 21 (11), pp. 69-74
  • Moghimi, S.M., Hunter, A.C., Murray, J.C., Nanomedicine: current status and future prospects (2005) FASEB J, 19 (3), pp. 311-330
  • Patil, K., Bagade, S., Bonde, S., Sharma, S., GauravSaraogi, G., Recent therapeutic approaches for the management of tuberculosis: challenges and opportunities (2018) Biomed Pharmacother, 99, pp. 735-745
  • Mohammad, I.S., He, W., Yin, L., Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR (2018) Biomed Pharmacother, 100, pp. 335-348
  • te Brake, L.H.M., de Knegt, G.J., de Steenwinkel, J.E., van Dam, T.J.P., Burger, D.M., Russel, F.G.M., The role of efflux pumps in tuberculosis treatment and their promise as a target in drug development: unraveling the black box (2018) Annu Rev Pharmacol Toxicol, 58, pp. 271-291
  • Li, P., Gu, Y., Li, J., Xie, L., Li, X., Xie, J., Mycobacterium tuberculosis major facilitator superfamily transporters (2017) J Membr Biol, 250 (6), pp. 573-585
  • Hamed, K., Debonnett, L., Tobramycin inhalation powder for the treatment of pulmonary Pseudomonas aeruginosa infection in patients with cystic fibrosis: a review based on clinical evidence (2017) Ther Adv Respir Dis, 11 (5), pp. 193-209
  • Manconi, M., Manca, M.L., Valentia, D., Escribano, E., Hillaireau, H., Anna Maria Fadda, A.M., Chitosan and hyaluronan coated liposomes for pulmonary administration of curcumin (2017) Int J Pharm, 525 (1), pp. 203-210
  • Wang, L., Zhou, Y., Wu, M., Wu, M., Li, X., Gong, X., Functional nanocarrier for drug and gene delivery via local administration in mucosal tisúes (2018) Nanomedicine (London), 13 (1), pp. 69-88
  • Telko, M.J., Hickey, A.J., Dry powder inhaler formulation (2005) Respir Care, 50 (9), pp. 1209-1227
  • Abdelwahed, W., Degobert, G., Fessi H. investigation of nanocapsules stabilization by amorphous excipients during freeze-drying and storage (2006) Eur J Pharm Biopharm, 63 (2), pp. 87-94
  • Igarashi, M., Ishizaki, Y., Takahashi, Y., New antituberculous drugs derived from natural products: current perspectives and issues in antituberculous drug development (2018) J Antibiot, 71 (1), pp. 15-25

Citas:

---------- APA ----------
Grotz, E., Tateosian, N., Amiano, N., Cagel, M., Bernabeu, E., Chiappetta, D.A. & Moretton, M.A. (2018) . Nanotechnology in Tuberculosis: State of the Art and the Challenges Ahead. Pharmaceutical Research, 35(11).
http://dx.doi.org/10.1007/s11095-018-2497-z
---------- CHICAGO ----------
Grotz, E., Tateosian, N., Amiano, N., Cagel, M., Bernabeu, E., Chiappetta, D.A., et al. "Nanotechnology in Tuberculosis: State of the Art and the Challenges Ahead" . Pharmaceutical Research 35, no. 11 (2018).
http://dx.doi.org/10.1007/s11095-018-2497-z
---------- MLA ----------
Grotz, E., Tateosian, N., Amiano, N., Cagel, M., Bernabeu, E., Chiappetta, D.A., et al. "Nanotechnology in Tuberculosis: State of the Art and the Challenges Ahead" . Pharmaceutical Research, vol. 35, no. 11, 2018.
http://dx.doi.org/10.1007/s11095-018-2497-z
---------- VANCOUVER ----------
Grotz, E., Tateosian, N., Amiano, N., Cagel, M., Bernabeu, E., Chiappetta, D.A., et al. Nanotechnology in Tuberculosis: State of the Art and the Challenges Ahead. Pharm. Res. 2018;35(11).
http://dx.doi.org/10.1007/s11095-018-2497-z