Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Purpose. The aim of the present work is to study the interaction of phosphate salts with trehalose and sucrose in freeze-dried matrices, particularly the effect of the salts on the glass transition temperature (T g) of the sugars. Methods. Freeze-dried trehalose and sucrose systems containing different amounts of sodium or potassium phosphate were analyzed by differential scanning calorimetry to determine the Tg and by Fourier-transform infrared spectroscopy (FTIR) analysis to evaluate the strength of the interaction between sugars and phosphate ions. Results. Sucrose-phosphate mixtures show an increase in Tg up to 40°C in a broad pH range (4-9) compared to that of pure sucrose. Sucrose-phosphate mixtures exhibit a higher Tg than pure sucrose while retaining higher water contents. Trehalose-phosphate mixtures (having a Tg of 135°C at a pH of 8.8) are a better option than pure trehalose for preservation of labile materials. The -OH stretching of the sugars in the presence of phosphates decreases with increase in pH, indicating an increase in the sugar-phosphate interaction. Conclusions. Sugar-phosphate mixtures exhibit several interesting features that make them useful for lyophilization of labile molecules; Tg values much higher than those observed for the pure sugars can be obtained upon the addition of phosphate. © 2004 Springer Science+Business Media, Inc.

Registro:

Documento: Artículo
Título:Effect of pH, counter ion, and phosphate concentration on the glass transition temperature of freeze-dried sugar-phosphate mixtures
Autor:Ohtake, S.; Schebor, C.; Palecek, S.P.; De Pablo, J.J.
Filiación:Chemical and Biological Engineering Department, University of Wisconsin, Madison, WI 53706, United States
Departamento de Industrias, Facultad de Ciencias Exactas Y Naturales, Ciudad Universitaria, (1428) Cd. Auton. de Buenos Aires, Argentina
Palabras clave:Freeze-drying; Glass transition, sucrose; Phosphate; Trehalose; hydroxyl group; phosphate; potassium dihydrogen phosphate; sodium dihydrogen phosphate; sucrose; trehalose; water; acidity; alkalinity; analytic method; article; differential scanning calorimetry; freeze drying; glass transition temperature; infrared spectroscopy; molecular interaction; pH; priority journal; temperature dependence; chemistry; freeze drying; pH; temperature; thermodynamics; Calorimetry, Differential Scanning; Freeze Drying; Hydrogen-Ion Concentration; Phosphates; Spectroscopy, Fourier Transform Infrared; Sucrose; Temperature; Thermodynamics; Trehalose; Water
Año:2004
Volumen:21
Número:9
Página de inicio:1615
Página de fin:1621
DOI: http://dx.doi.org/10.1023/B:PHAM.0000041456.19377.87
Título revista:Pharmaceutical Research
Título revista abreviado:Pharm. Res.
ISSN:07248741
CODEN:PHREE
CAS:phosphate, 14066-19-4, 14265-44-2; potassium dihydrogen phosphate, 7778-77-0; sodium dihydrogen phosphate, 7558-80-7, 7632-05-5; sucrose, 122880-25-5, 57-50-1; trehalose, 99-20-7; water, 7732-18-5; Phosphates; Sucrose, 57-50-1; Trehalose, 99-20-7; Water, 7732-18-5
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07248741_v21_n9_p1615_Ohtake

Referencias:

  • Duddu, S., DalMonte, P., Effect of glass transition temperature on the stability of lyophilized formulations containing a chimeric therapeutic monoclonal antibody (1997) Pharm. Res., 14, p. 591
  • Buitink, J., Van Den Dries, J., Hoekstra, F., Alberda, M., Hemminga, M., High critical temperature above Tg may contribute to the stability of biological systems (2000) Biophys. J., 79, pp. 1119-1128
  • Uritani, M., Takai, M., Yoshinaga, K., Protective Effect of Disaccharides on Restriction Endonucleases during Drying under Vacuum (1995) J. Biochem., 117, p. 774
  • Crowe, J.H., Carpenter, J.F., Crowe, L.M., The role of vitrification in anhydrobiosis (1998) Annu. Rev. Physiol., 6, pp. 73-103
  • Crowe, L.M., Reid, D., Crowe, J.H., Is trehalose special for preserving dry biomaterials? (1996) Biophys. J., 71, pp. 2087-2093
  • Tzannis, S., Prestrelski, S., Moisture effects on protein-excipient interactions in spray-dried powders. Nature of destabilizing effects of sucrose (1999) J. Pharm. Sci., 88, p. 360
  • Randolph, T.W., Phase separation of excipients during lyophilization: Effects on protein stability (1997) J. Pharm. Sci., 86, pp. 1198-1203
  • Koster, K., Leopold, A.C., Sugars and desiccation tolerance in seeds (1988) Plant Physiol., 88, pp. 829-832
  • Carpenter, J., Hand, S., Crowe, L., Crowe, J., Cryoprotection of Phosphofructokinase with Organic Solutes - Characterization of Enhanced Protection in the Presence of Divalent-Cations (1986) Arch. Biochem. Biophys., 250, pp. 505-512
  • Morel-Desrosier, N., Lhermet, C., Morel, J.P., Interactions between cations and sugars. Part 6. Calorimetric method for simultaneous determination of the stability constant and enthalpy change for weak complexation (1991) J. Chem. Soc. Faraday T, 87, pp. 2173-2177
  • Rongere, P., Morel-Desrosiers, N., Morel, J., Interactions between Cations and Sugars. 8. Gibbs Energies, Enthalpies and Entropies of Association of Divalent and Trivalent Metal-Cations with Xylitol and Glucitol in Water at 298.15 K (1995) J. Chem. Soc. Faraday T, 91, pp. 2771-2777
  • Miller, D.P., De Pablo, J.J., Corti, H.R., Thermophysical properties of trehalose and its concentrated aqueous solutions (1997) Pharm. Res., 14, pp. 578-590
  • Miller, D.P., Anderson, R.E., De Pablo, J.J., Stabilization of lactate dehydrogenase following freeze-thawing and vacuum drying in the presence of trehalose and borate (1998) Pharm. Res., 15, pp. 1215-1221
  • Miller, D.P., De Pablo, J.J., Corti, H.R., Viscosity and glass transition temperature of aqueous mixtures of trehalose with borax and sodium chloride (1999) J. Phys. Chem. B, 103, pp. 10243-10249
  • Conrad, P.B., Miller, D.P., Cielenski, P.R., De Pablo, J.J., Stabilization and preservation of Lactobacillus acidophilus in saccharide matrices (2000) Cryobiology, 41, pp. 17-24
  • Conrad, P., (2000) Preservation of Biological Molecules and Living Cells, , Ph D Thesis
  • Ekdawi-Sever, N., Conrad, P.B., De Pablo, J.J., The effects of annealing on freeze-dried Lactobacillus acidophilus (2003) J. Food Sci., 68, pp. 2504-2511
  • Ohtake, S., Schebor, C., Palecek, S.P., De Pablo, J.J., Effect of sugar-phosphate mixtures on the stability of DPPC membranes in dehydrates systems (2004) Cryobiology, 48, pp. 81-89
  • Greenspan, L., Humidity fixed points of binary saturated aqueous solutions (1977) J. Res., 81, pp. 89-96
  • Wolkers, W.F., Oldenhof, H., Alberda, M., Hoekstra, F.A., A Fourier transform infrared microspectroscopy study of sugar glasses: Application to anhydrobiotic higher plant cells (1998) Biochim. Biophys. Acta, 1379, pp. 83-96
  • Mazzobre, M.F., Longinotti, M.P., Corti, H.R., Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 1. Water sorption behaviour and ice crystallization/melting (2001) Cryobiology, 43, pp. 199-210
  • Taylor, L.S., Zografi, G., Sugar-polymer hydrogen bond interactions in lyophilized amorphous mixtures (1998) J. Pharm. Sci., 87, pp. 1615-1621
  • Van Den Berg, L., Rose, D., Effect of freezing on the pH and composition of sodium and potassium phosphate solutions: The reciprocal system KH2PO4-Na2HPO4-H2O (1959) Arch. Biochem. Biophys., 81, pp. 319-329
  • MacFarlane, D.R., Pringle, J., Annat, G., Reversible self-polymerizing high Tg lyoprotectants (2002) Cryobiology, 45, pp. 188-192
  • Murase, N., Echlin, P., Franks, F., The structural states of freeze-concentrated and freeze-dried phosphates studied by scanning electron microscopy and differential scanning calorimetry (1991) Cryobiology, 28, pp. 364-375
  • Longinotti, M.P., Mazzobre, M.F., Buera, M.P., Effect of salts on properties of aqueous sugar systems in relation to biomaterial stabilization. 2. Sugar crystallization rate and electrical conductivity behavior (2002) Phys. Chem. Chem. Phys., 4, pp. 533-540
  • Mazzobre, M.F., Buera, M.P., Combined effects of trehalose and cations on thermal resistance of B-galactosidase in freeze-dried systems (1999) Biochim. Biophys. Acta, 1473, pp. 337-344

Citas:

---------- APA ----------
Ohtake, S., Schebor, C., Palecek, S.P. & De Pablo, J.J. (2004) . Effect of pH, counter ion, and phosphate concentration on the glass transition temperature of freeze-dried sugar-phosphate mixtures. Pharmaceutical Research, 21(9), 1615-1621.
http://dx.doi.org/10.1023/B:PHAM.0000041456.19377.87
---------- CHICAGO ----------
Ohtake, S., Schebor, C., Palecek, S.P., De Pablo, J.J. "Effect of pH, counter ion, and phosphate concentration on the glass transition temperature of freeze-dried sugar-phosphate mixtures" . Pharmaceutical Research 21, no. 9 (2004) : 1615-1621.
http://dx.doi.org/10.1023/B:PHAM.0000041456.19377.87
---------- MLA ----------
Ohtake, S., Schebor, C., Palecek, S.P., De Pablo, J.J. "Effect of pH, counter ion, and phosphate concentration on the glass transition temperature of freeze-dried sugar-phosphate mixtures" . Pharmaceutical Research, vol. 21, no. 9, 2004, pp. 1615-1621.
http://dx.doi.org/10.1023/B:PHAM.0000041456.19377.87
---------- VANCOUVER ----------
Ohtake, S., Schebor, C., Palecek, S.P., De Pablo, J.J. Effect of pH, counter ion, and phosphate concentration on the glass transition temperature of freeze-dried sugar-phosphate mixtures. Pharm. Res. 2004;21(9):1615-1621.
http://dx.doi.org/10.1023/B:PHAM.0000041456.19377.87