Artículo

Fernandez, P.; Rienzo, J.A.D.; Moschen, S.; Dosio, G.A.A.; Aguirrezábal, L.A.N.; Hopp, H.E.; Paniego, N.; Heinz, R.A. "Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis" (2011) Plant Cell Reports. 30(1):63-74
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The selection and validation of reference genes constitute a key point for gene expression analysis based on qPCR, requiring efficient normalization approaches. In this work, the expression profiles of eight genes were evaluated to identify novel reference genes for transcriptional studies associated to the senescence process in sunflower. Three alternative strategies were applied for the evaluation of gene expression stability in leaves of different ages and exposed to different treatments affecting the senescence process: algorithms implemented in geNorm, BestKeeper software, and the fitting of a statistical linear mixed model (LMModel). The results show that geNorm suggested the use of all combined genes, although identifying α-TUB1 as the most stable expressing gene. BestKeeper revealed α-TUB and β-TUB as stable genes, scoring β-TUB as the most stable one. The statistical LMModel identified α-TUB, actin, PEP, and EF-1α as stable genes in this order. The model-based approximation allows not only the estimation of systematic changes in gene expression, but also the identification of sources of random variation through the estimation of variance components, considering the experimental design applied. Validation of α-TUB and EF-1α as reference genes for expression studies of three sunflower senescence associated genes showed that the first one was more stable for the assayed conditions. We conclude that, when biological replicates are available, LMModel allows a more reliable selection under the assayed conditions. This study represents the first analysis of identification and validation of genuine reference genes for use as internal control in qPCR expression studies in sunflower, experimentally validated throughout six different controlled leaf senescence conditions. © 2010 Springer-Verlag.

Registro:

Documento: Artículo
Título:Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis
Autor:Fernandez, P.; Rienzo, J.A.D.; Moschen, S.; Dosio, G.A.A.; Aguirrezábal, L.A.N.; Hopp, H.E.; Paniego, N.; Heinz, R.A.
Filiación:Instituto de Biotecnología, CICVyA, INTA Castelar, Las Cabañas y Los Reseros, (1686) Hurlingham, Buenos Aires, Argentina
Cátedra de Estadística y Biometría, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina
Laboratorio de Fisiología Vegetal, Unidad Integrada (Facultad de Ciencias Agrarias UNMdP/EEA INTA) Balcarce, C.C. 276, 7620 Balcarce, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Buenos Aires, Argentina
Palabras clave:qPCR; Reference genes; Senescence; Sunflower; complementary DNA; elongation factor 1; messenger RNA; tubulin; algorithm; article; comparative study; computer program; gene expression regulation; genetic transcription; genetics; growth, development and aging; metabolism; methodology; plant gene; plant leaf; reproducibility; reverse transcription polymerase chain reaction; standard; sunflower; Algorithms; DNA, Complementary; Gene Expression Regulation, Plant; Genes, Plant; Helianthus; Peptide Elongation Factor 1; Plant Leaves; Reference Standards; Reproducibility of Results; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Software; Transcription, Genetic; Tubulin; Helianthus
Año:2011
Volumen:30
Número:1
Página de inicio:63
Página de fin:74
DOI: http://dx.doi.org/10.1007/s00299-010-0944-3
Título revista:Plant Cell Reports
Título revista abreviado:Plant Cell Rep.
ISSN:07217714
CODEN:PCRPD
CAS:DNA, Complementary; Peptide Elongation Factor 1; RNA, Messenger; Tubulin
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07217714_v30_n1_p63_Fernandez

Referencias:

  • Akaike, H., A new look at the statistical model identification (1974) IEEE Trans Automat Contr, 19, pp. 716-723
  • Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D., Basic local alignment search tool (1990) J Mol Biol, 215, pp. 403-410
  • Andersen, C., Jensen, J., Orntoft, T., Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets (2004) Cancer Res, 64, pp. 5245-5250
  • Artico, S., Nardeli, S.M., Brilhante, O., Grossi-de-Sa, M.F., Alves-Ferreira, M., Identification and evaluation of new reference genes in Gossypium hirsutum for accurate normalization of real-time quantitative RT-PCR data (2010) BMC Plant Biology, 10, p. 49
  • Barsalobres-Cavallari, C., Severino, F., Maluf, M., Maia, I., Identification of suitable internal control genes for expression studies in Coffea arabica under different experimental conditions (2009) BMC Molecular Biology, 10 (1), p. 1
  • Borrás, M., Madonni, G., Otegui, M., Leaf senescence in maize hybrids: plant population, row spacing and kernel set effects (2003) Field Crops Res, 82, pp. 13-26
  • Brunner, A.M., Yakovlev, I.A., Strauss, S.H., Validating internal controls for quantitative plant gene expression studies (2004) BMC Plant Biology, 4, p. 14
  • Buchanan-Wollaston, V., Ainsworth, C., Leaf senescence in Brassica napus: cloning of senescence-related genes by subtractive hybridization (1997) J Exp Bot, 52, pp. 1117-1121
  • Buchanan-Wollaston, V., Earl, S., Harrison, E., Mathas, E., Navabpour, S., Page, T., Pink, D., The molecular analysis of leaf senescence-a genomic approach (2003) Plant Biotechnol J, 1, pp. 3-22
  • Bustin, S., Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems (2002) J Mol Endocrinol, 29, pp. 23-39
  • Bustin, S., Benes, V., Garson, J., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Wittwer, C., The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments (2009) Clin Chem, 55, pp. 611-622
  • Chervoneva, I., Li, Y., Schulz, S., Croker, S., Wilson, C., Waldman, S.A., Hyslop, T., Selection of optimal reference genes for normalization in quantitative RT-PCR (2010) BMC Bioinformatics, 11, p. 253
  • Coker, J.S., Davies, E., Selection of candidate housekeeping controls in tomato plants using EST data (2003) Biotechniques, 35, pp. 740-748
  • Czechowski, T., Bari, R., Stitt, M., Scheible, W.-R., Udvardi, M., Real-time RT-PCR profiling of over 1, 400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes (2004) Plant J, 38, pp. 366-379
  • Czechowski, T., Stitt, M., Altmann, T., Udvardi, M., Scheible, W.-R., Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis (2005) Plant Physiol, 139, pp. 5-17
  • de Ketelaere, A., Goossens, K., Peelman, L., Burvenich, C., Technical note: validation of internal control genes for gene expression analysis in bovine polymorphonuclear leukocytes (2006) J Dairy Sci, 89, pp. 4066-4069
  • Dombrovski, J.E., Martin, R.C., Evaluation of reference genes for quantitative RT-PCR in Lolium temulentum under abiotic stress (2008) Plant Sci, 176, pp. 390-396
  • Duarte, S.E., Alves-Ferreira, M., Arrais, G.L., Rodrigues da silva, F., de Tavares Campos Carneiro, V., Selection of reference genes for quantitative real-time PCR expresssion studes in the apomictic and sexual grass Brachiaria brizantha (2009) BMC Plant Biol, 9, p. 84
  • Exposito-Rodriguez, M., Borges, A., Borges-Perez, A., Perez, J., Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process (2008) BMC Plant Biol, 8, p. 31
  • Fernandez, P., Di Rienzo, J., Fernandez, L., Hopp, H., Paniego, N., Heinz, R.A., Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis (2008) BMC Plant Biol, 8, p. 11
  • Gan, S., (2003) Mitotic and postmitotic senescence in plants, , Science's SAGE KE
  • Gan, S., Amasino, R.M., Making sense of senescence (1997) Plant Physiol, 113, pp. 313-319
  • Gepstein, S., Sabehi, G., Carp, M.-J., Hajouj, T., Nesher, M.F.O., Yariv, I., Dor, C., Bassani, M., Large-scale identification of leaf senescence-associated genes (2003) Plant J, 36, pp. 629-642
  • Gonzalez-Verdejo, C.I., Die, J.V., Nadal, S., Jimenez-Marín, A., Moreno, M.T., Román, B., Selection of housekeeping genes for normalization by real-time RT-PCR: analysis of Or-MYB1 gene expression in Orobanche ramosa development (2008) Anal Biochem, 379, pp. 38-43
  • Guenin, S., Mauriat, M., Pelloux, J., van Wuytswinkel, O., Bellini, C., Gutierrez, L., Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references (2009) J Exp Bot, 60, pp. 487-493
  • Gutierrez, N., Giménez, M.J., Palomino, C., Avila, C.M., Assessment of candidate reference genes for expression studies in Vicia faba L. by real-time quantitative PCR (2010) Mol Breed., , doi:10.1007/s11032-010-9456-7
  • Hewezi, T., Leger, M., El Kayal, W., Gentzbittel, L., Transcriptional profiling of sunflower plants growing under low temperatures reveals an extensive down-regulation of gene expression associated with chilling sensitivity (2006) J Exp Bot, 57, pp. 3109-3122
  • Huis, R., Hawkins, S., Neutelings, G., Selection of reference genes for quantitative gene expression normalization in flax (Linum usitatissimum L.) (2010) BMC Plant Biol, 10, p. 7
  • Jain, M., Genome-wide identification of novel internal control genes for normalization of gene expression during various stages of development in rice (2009) Plant Sci, 176, pp. 702-706
  • Jain, M., Nijhawan, A., Tyagi, A.K., Khurana, J.P., Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR (2006) Biochem Biophys Res Commun, 345, pp. 646-651
  • Jian, B., Liu, B., Bi, Y., Hou, W., Wu, C., Han, T., Validation of internal control for gene expression study in soybean by quantitative real-time PCR (2008) BMC Mol Biol, 9, p. 59
  • Kim, B.-R., Nam, H.-Y., Kim, S.-U., Kim, S.-I., Chang, Y.-J., Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice (2003) Biotechnol Lett, 25, pp. 1869-1872
  • Kuijk, E., du Puy, L., TA von Tol, H., Haagsman, H., Colenbrander, P., Roelen, B., Validation of reference genes for quantitative RT-PCR studies in porcine oocytes and preimplantation embryos (2007) BMC Dev Biol, 7, p. 58
  • Lechner, L., Pereyra Irujo, G., Granier, C., Aguirrezabal, L., Re-watering of plants under water deficit reveals that leaf cells retain their ability to expand after the leaf has apparently reached its final size (2008) Ann Bot, 101, pp. 1007-1015
  • Libault, M., Thibivilliers, D., Bilgin, D., Radwan, O., Benitez, M., Clough, S., Stacey, G., Identification of four soybean reference genes for gene expression normalization (2008) Plant Genome, 1, pp. 44-54
  • Lim, P.O., Woo, H.R., Nam, H.G., Molecular genetics of leaf senescence in Arabidopsis (2003) Trends Plant Sci, 8, pp. 272-278
  • Lim, P., Kim, H., Nam, H., Leaf senescence (2007) Annu Rev Plant Biol, 58, pp. 115-136
  • Lin, Y.L., Lai, Z.X., Reference gene selection for qPCR analysis during somatic embryogenesis in longan tree (2010) Plant Sci, 178, pp. 359-365
  • Livak, K., Schmittgen, T., Analysis of relative gene expression data using real-time quantitative PCR and the 2-{increment}{increment}Ct method (2001) Methods, 25, pp. 402-408
  • Lovdal, T., Lillo, C., Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress (2009) Anal Biochem, 387, pp. 238-242
  • Luo, H., Chen, S., Wan, H., Chen, F., Gu, C., Liu, Z., Candidate reference genes for gene expression studes in water lily (2010) Anal Biochem, , doi:10.1016/j.ab.2010.05.002
  • Mallona, I., Lischewski, S., Weiss, J., Hause, B., Egea-Cortines, M., Validation of reference genes for quantitative real-time PCR during leaf and flower development in Petunia hybrida (2010) BMC Plant Biol, 10, p. 4
  • Maroufi, A., van Bockstaele, E., De Loose, M., Validation of reference genes for gene expression analysis in chicory (Cichorium intybus) using quantitative real-time PCR (2010) BMC Mol Biol, 11, p. 15
  • Martin, R., Hollenbeck, V., Dombrowski, J., Evaluation of Reference Genes for Quantitative RT-PCR in Lolium perenne (2008) Crop Sci, 48, pp. 1881-1887
  • Narsai, R., Ivanova, A., Ng, S., Whelan, J., Defining reference genes in Oryza sativa using organ, development, biotic and abiotic transcriptome datasets (2010) BMC Plant Biol, 10, p. 56
  • http://blast.ncbi.nlm.nih.gov/, National Center for Biotechnology Information (NCBI); http://www.sunflowernsa.com/stats/table.asp?contentID=109&htmlID=74&submit170=View&submit.x=57&submit.y=12); Nicot, N., Hausman, J.-F., Hoffman, L., Evers, D., Housekeeping gene selection for real-time PCR normalization in potato during biotic and abiotic stress (2005) J Exp Bot, 56, pp. 2907-2914
  • Olbrich, M., Gerstner, E., Welzl, G., Fleischmann, F., Obwald, W., Bahnweg, G., Ernst, D., Quantification of mRNAs and housekeeping gene selection for quantitative real-time RT-PCR normalization in European Beech (Fagus sylvatica L.) during abiotic and biotic stress (2008) Z Naturforsch C, 63, pp. 574-582
  • Pabinger, S., Thallinger, G., Snajder, R., Eichjorn, H., Rader, R., Trajanoski, Z., QPCR: application for real-time PCR data management and analysis (2009) BMC Bioinformatics, 10, p. 268
  • Paolacci, A., Tanzarella, O., Porceddu, E., Ciaffi, M., Identification and validation of reference genes for quantitative RT-PCR normalization in wheat (2009) BMC Mol Biol, 10, p. 11
  • Pfaffl, M.W., A new mathematical model for relative quantification in real-time RT-PCR (2001) Nucleic Acid Res, 29, pp. e45
  • Pfaffl, M., Tichopád, A., Prgomet, C., Neuvians, T., Determination of Stable Housekeeping Genes, Differentially Regulated Target Genes and Sample Integrity: BestKeeper-Excel-Based Tool Using Pair-Wise Correlations (2004) Biotechnol Lett, 26, pp. 509-515
  • Pic, E., Teyssandier de la serve, B., Tardieu, F., Turc, O., Leaf senescence induced by mild water deficit follows the same sequence of macroscopic, biochemical, and molecular events as monocarpic senescence in pea (2002) Plant Physiol, 128, pp. 236-246
  • Pommel, B., Gallais, A., Coque, M., Quelleré, I., Hirel, B., Prioul, J., Andrieu, B., Floriot, M., Carbon and nitrogen allocation and grain filling in three maize hybrids differing in leaf senescence (2006) Eur J Agron, 24, pp. 203-211
  • Quackenbush, J., Microarray data normalization and transformation (2002) Nat Genet, 32, pp. 496-501
  • Radonic, A., Thulke, S., Mackay, I.M., Landt, O., Siegert, W., Nitsche, A., Guideline to reference gene selection for quantitative real-time PCR (2004) Biochem Biophys Res Commun, 313, pp. 856-862
  • Reid, K.E., Olsson, N., Schlosser, J., Peng, F., Lund, S.T., An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development (2006) BMC Plant Biol, 6, p. 27
  • Remans, T., Smeets, K., Opdenakker, K., Mathijsen, D., Vangronsveld, J., Cuypers, A., Normalisation of real-time PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations (2008) Planta, 227 (6), pp. 1343-1349. , doi:10.1007/s00425-008-0706-4
  • Sadras, V., Echarte, L., Andrade, F., Profiles of leaf senescence during reproductive growth of sunflower and maize (2000) Ann Bot, 85, pp. 187-195
  • Schmidt, G.W., Delaney, S.K., Stable internal reference genes for normalization of real-time RT-PCR in tobacco (Nicotiana tabacum) during development and abiotic stress (2010) Mol Genet Genomics, 283, pp. 233-241
  • Scholdberg, T.A., Norden, T.D., Nelson, D.D., Ronald, J.G., Evaluating precision and accuracy when quantifying different endogenous control reference genes in maize using real-time PCR (2009) J Agric Food Chem, 57, pp. 2903-2911
  • Spanakis, E., Problems related to the interpretation of autoradiographic data on gene expression using common constitutive transcripts as controls (1993) Nucleic Acids Res, 21, pp. 3809-3819
  • Suzuki, T., Higgins, P.J., Crawford, D.R., Control selection for RNA quantitation (2000) Biotechniques, 29, pp. 332-337
  • Szabo, A., Perou, C.M., Karaca, M., Perreard, L., Quackenbush, J.F., Bernard, P.S., Statistical modeling for selecting housekeeper genes (2004) Genome Biology, 5, pp. R59
  • http://compbio.dfci.harvard.edu/tgi/cgi-bin/tgi/gimain.pl?gudb=sunflower, The Dana Farber Cancer Institute Sunflower Gene Index Project; Thorrez, L., van Deun, K., Tranchevent, L.C., van Lommel, L., Engelen, K., Marchal, K., Moreau, Y., Schuit, F., Using ribosomal protein genes as reference: a tale of caution (2008) PLoS One, 3, pp. e1854
  • Tong, Z., Gao, Z., Wang, F., Zhou, J., Zhang, Z., Selection of reliable reference genes for gene expression studies in peach using real-time PCR (2009) BMC Mol Biol, 10, p. 71
  • Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., van Roy, N., De Paepe, A., Speleman, F., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes (2002) Genome Biology, 3 (7), pp. RESEARCH0034
  • Wan, H., Zhao, Z., Qian, C., Sui, Y., Malik, A., Chen, J., Selection of appropriate reference genes for gene expression studies by quantitative real-time polymerase chain reaction in cucumber (2009) Anal Biochem, , doi:10.1016/j.ab.2009.12.008
  • Weaver, M., Amasino, R., Senescence is induced in individually darkened Arabidopsis leaves, but inhibited in whole darkened plants (2001) Plant Physiol, 127, pp. 876-886
  • Yang, Y., Hou, S., Cui, G., Chen, S., Wei, J., Huang, L., Characterization of reference genes for quantitative real-time PCR analysis in various tissues of Salvia miltiorrhiza (2010) Mol Biol Rep, 37, pp. 507-513

Citas:

---------- APA ----------
Fernandez, P., Rienzo, J.A.D., Moschen, S., Dosio, G.A.A., Aguirrezábal, L.A.N., Hopp, H.E., Paniego, N.,..., Heinz, R.A. (2011) . Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis. Plant Cell Reports, 30(1), 63-74.
http://dx.doi.org/10.1007/s00299-010-0944-3
---------- CHICAGO ----------
Fernandez, P., Rienzo, J.A.D., Moschen, S., Dosio, G.A.A., Aguirrezábal, L.A.N., Hopp, H.E., et al. "Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis" . Plant Cell Reports 30, no. 1 (2011) : 63-74.
http://dx.doi.org/10.1007/s00299-010-0944-3
---------- MLA ----------
Fernandez, P., Rienzo, J.A.D., Moschen, S., Dosio, G.A.A., Aguirrezábal, L.A.N., Hopp, H.E., et al. "Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis" . Plant Cell Reports, vol. 30, no. 1, 2011, pp. 63-74.
http://dx.doi.org/10.1007/s00299-010-0944-3
---------- VANCOUVER ----------
Fernandez, P., Rienzo, J.A.D., Moschen, S., Dosio, G.A.A., Aguirrezábal, L.A.N., Hopp, H.E., et al. Comparison of predictive methods and biological validation for qPCR reference genes in sunflower leaf senescence transcript analysis. Plant Cell Rep. 2011;30(1):63-74.
http://dx.doi.org/10.1007/s00299-010-0944-3