Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Both saline and alkaline conditions frequently coexist in nature; however, little is known about the effects of alkaline and salt-alkaline stresses on plants. We performed pot experiments with four treatments, control without salt addition and three stress conditions-neutral, alkaline, and mixed salt-alkaline-to determine their effects on growth, nutrient accumulation and root architecture in the glycophytic species Lotus tenuis. Neutral and alkaline salts produced a similar detrimental effect on L. tenuis growth, whereas the effect of their combination was synergistic. Neutral salt addition, alone or mixed with NaHCO 3, led to significant leaf Na + build up and reduced K + concentration. In contrast, in plants treated with NaHCO 3 only, Na + levels and the Na +/K + ratio remained relatively unchanged. Proline accumulation was not affected by the high pH in the absence of NaCl, but it was raised by the neutral salt and mixed treatments. The total root length was reduced by the addition of NaCl alone, whereas it was not affected by alkalinity, regardless of the presence of NaCl. The topological trend showed that alkalinity alone or mixed with NaCl turned the root more herringbone compared with control roots, whereas no significant change in this index was observed in the treatment with the neutral salt only. The pattern of morphological changes in L. tenuis root architecture after the alkaline treatment (in the absence of NaCl) was similar to that found in the mixed salt-alkaline treatment and different from that observed in neutral salt. A unique root morphological response to the mixed salt-alkaline stress was the reduction in the ratio between xylem vessels and root cross-sectional areas. © 2012 Springer Science+Business Media, LLC.

Registro:

Documento: Artículo
Título:Comparative Study of Alkaline, Saline, and Mixed Saline-Alkaline Stresses with Regard to Their Effects on Growth, Nutrient Accumulation, and Root Morphology of Lotus tenuis
Autor:Paz, R.C.; Rocco, R.A.; Reinoso, H.; Menéndez, A.B.; Pieckenstain, F.L.; Ruiz, O.A.
Filiación:Unidad de Biotecnología 1, IIB-IINTECH/UNSAM-CONICET, Chascomús, Buenos Aires, Argentina
Laboratorio de Morfología Vegetal, Departamento de Ciencias Naturales, Universidad Nacional de Río Cuarto, 5800 Rio Cuarto, Córdoba, Argentina
Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Unidad de Biotecnología 1, IIB-IINTECH/CONICET, Chascomús, Buenos Aires, Argentina
Palabras clave:Alkaline stress; Carbon allocation; Growth; Ion homeostasis; Lotus tenuis; Root anatomy; Root topology; Saline stress; Lotus tenuis
Año:2012
Volumen:31
Número:3
Página de inicio:448
Página de fin:459
DOI: http://dx.doi.org/10.1007/s00344-011-9254-4
Título revista:Journal of Plant Growth Regulation
Título revista abreviado:J. Plant Growth Regul.
ISSN:07217595
CODEN:JPGRD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07217595_v31_n3_p448_Paz

Referencias:

  • Alam, S.M., Nutrient uptake by plants under stress conditions (1993) Handbook of Plant and Crop Stress, pp. 227-246. , M. Pessarakli (Ed.), New York: Marcel Dekker Inc
  • Bahaji, A., Mateu, I., Sanz, A., Cornejo, M.J., Common and distinctive responses of rice seedlings to saline- and osmotically-generated stress (2002) Plant Growth Regul, 38, pp. 83-94
  • Baum, S.F., Tran, P.N., Silk, W.K., Effects of salinity on xylem structure and water use in growing leaves of sorghum (2000) New Phytol, 146, pp. 119-127
  • Benton, J.J., Case, V.W., Sampling, handling and analysis plant tissue samples. Chap 15 (1990) Soil Testing and Plant Analysis, , 3rd edn., R. L. Westerman (Ed.), Madison: Soil Science Society of America
  • Cakmak, I., Marschner, H., Bangerth, F., Effect of Zn nutritional status on growth, protein metabolism and levels of indole-3-acetic acid and other phytohormones in bean (Phaseolus vulgaris) (1989) J Exp Bot, 40, pp. 405-412
  • Cartmill, A., Valdez-Aguilar, L.A., Bryan, D.A., Alarcón, A., Arbuscular mycorrhizal fungi enhance tolerance of vinca to high alkalinity in irrigation water (2008) Sci Hortic (Amst), 115, pp. 275-284
  • Chen, S., Li, J., Wang, S., Hüttermann, A., Altman, A., Salt, nutrient uptake and transport, and ABA of Populus euphratica: a hybrid in response to increasing soil NaCl (2001) Trees, 15, pp. 186-194
  • Clark, R.B., Plant response to mineral element toxicity and deficiency (1982) Breeding Plants for less Favorable Environments, pp. 71-142. , M. N. Christiansen and C. F. Lewis (Eds.), New York: Wiley
  • Costa, J.L., García, F.O., Respuesta de un pastizal natural a la fertilización con fósforo y nitrógeno en un natracuol (1998) Ria, 28, pp. 31-39
  • Cramer, G.R., Lauchli, A., Epstein, E., Effects of NaCl and CaCl 2 on ion activities in complex nutrient solutions and root growth of cotton (1986) Plant Physiol, 81, pp. 792-797
  • Dhingra, H.R., Varghese, T.M., Effect of salt stress on viability, germination and endogenous levels of some metabolites and ions in maize (Zea mays L.) pollen (1985) Ann Bot-Lond, 55, pp. 415-420
  • Echeverria, M., Scambato, A.A., Sannazzaro, A.I., Maiale, S., Ruiz, O.A., Menéndez, A.B., Phenotypic plasticity with respect to salt stress response by Lotus glaber: the role of its AM fungal and rhizobia symbionts (2008) Mycorrhiza, 18, pp. 317-329
  • Fitter, A.H., An architectural approach to the comparative ecology of plant root systems (1987) New Phytol, 106, pp. 61-67
  • Fitter, A.H., Stickland, T.R., Architectural analysis of plant root systems 2. Influence of nutrient supply on architecture in contrasting plant species (1991) New Phytol, 118, pp. 383-389
  • Gadallah, M.A.A., Effects of proline and glycinebetaine on Vicia faba responses to salt stress (1999) Biol Plant, 42, pp. 249-257
  • Garcia, A.B., Engler, J.D., Iyer, S., Gerats, T., van Montagu, M., Caplan, A.B., Effects of osmoprotectants upon NaCl stress in rice (1997) Plant Physiol, 115, pp. 159-169
  • Gersani, M., Graham, E.A., Nobel, P.S., Growth responses of individual roots of Opuntia ficus-indica to salinity (1993) Plant Cell Environ, 16, pp. 827-834
  • Gharsalli, M., Zribi, K., Hajji, M., Physiological responses of pea to iron deficiency induced by bicarbonate (2001) Plant Nutrition: Food Security and Sustainability of Agro-Ecosystems through Basic and Applied Research, pp. 606-607. , W. J. Horst (Ed.), New York: Springer, (Developments in Plant and Soil Sciences)
  • Greenway, H., Munns, R., Mechanism of salt tolerance in non-halophytes (1980) Ann Rev Plant Physiol, 31, pp. 149-190
  • Hajiboland, R., Yang, X.E., Römheld, V., Effects of bicarbonate and high pH on growth of Zn-efficient and Zn-inefficient genotypes of rice, wheat and rye (2003) Plant Soil, 250, pp. 349-357
  • Hasegawa, P.M., Bressan, R.A., Zhu, J.K., Bohnert, H.J., Plant cellular and molecular response to high salinity (2000) Annu Rev Plant Physiol Plant Mol Biol, 51, pp. 463-499
  • Hosseini, S.M., Maftoun, M., Karimian, N., Ronaghi, A., Emam, Y., Effect of zinc X boron interaction on plant growth and tissue nutrient concentration of corn (2007) J Plant Nutr, 30, pp. 773-781
  • Hummel, I., Vile, D., Violle, C., Devaux, J., Ricci, B., Blanchard, A., Garnier, E., Roumet, C., Relating root structure and anatomy to whole-plant functioning in 14 herbaceous Mediterranean species (2007) New Phytol, 173, pp. 313-321
  • Johansen, D.A., (1940) Plant Microtechnique, , 1st edn., New York: McGraw-Hill Book Company
  • Junghans, U., Polle, A., Düchting, P., Weiles, E., Kuhlman, B., Gruber, F., Teichmann, T., Adaptation to high salinity in poplar involver changes in xylem anatomy and auxin physiology (2006) Plant Cell Environ, 29, pp. 1519-1531
  • Kirkbride, J.H., The scientific name of narrow-leaf trefoil (2006) Crop Sci, 46, pp. 2169-2170
  • Kramer, D., Transfer cells in the epidermis of roots (1980) Plant Membrane Transport: Current Conceptual Issues, , R. M. Spanswick, W. Lucas, and J. Dainty (Eds.), Amsterdam: Elsevier/North Holland Biomedical Press
  • Kurth, E., Cramer, G.R., Läuchli, A., Epstein, E., Effects of NaCl and CaCl 2 on cell enlargement and cell production in cotton roots (1986) Plant Physiol, 82, pp. 1102-1106
  • Lahaye, P.A., Epstein, E., Calcium and salt tolerance by bean plants (1971) Plant Physiol, 25, p. 213
  • Li, P.H., Zhang, H., Wang, B.S., Ionic homeostasis of plant under salt stress (2003) Acta Bot Boreal-Occident Sin, 23, pp. 1810-1817
  • Li, R., Shi, F., Fukuda, K., Interactive effects of salt and alkali stresses on seed germination, germination recovery, and seedling growth of a halophyte Spartina alterniflora (Poaceae) (2010) S Afr J Bot, 76, pp. 380-387
  • Lynch, J., Root architecture and plant productivity (1995) Plant Physiol, 109, pp. 7-13
  • Magné, C., Larher, F., High sugar content of extracts interferes with colorimetric determination of amino acids and free proline (1992) Anal Biochem, 200, pp. 115-118
  • Manchanda, G., Garg, N., Salinity and its effects on the functional biology of legumes (2008) Acta Physiol Plant, 30, pp. 595-618
  • Mansour, M.M.F., Protection of plasma membrane of onion epidermal cells by glycinebetaine and proline against NaCl stress (1998) Plant Physiol Biochem, 36, pp. 767-772
  • Marschner, H., (1995) Mineral Nutrition of Higher Plants, , 2nd edn., London: Academic Press
  • Mazzanti, A., Darwich, N.A., Cheppi, C., Sarlangue, H., Persistencia de pasturas cultivadas en zonas ganaderas de la Pcia. De Buenos Aires (1986) Rev Argent Producción Anim, 6, p. 65
  • Mendoza, R., Escudero, V., García, I., Plant growth, nutrient acquisition and mycorrhizal symbioses of a waterlogging tolerant legume (Lotus glaber Mill.) in a saline-sodic soil (2005) Plant Soil, 275, pp. 305-315
  • Montes, L., (1988) Rev Arg Prod Anim, 8, pp. 367-376
  • Munns, R., Comparative physiology of salt and water stress (2002) Plant Cell Environ, 25, pp. 239-250
  • Munns, R., Schachtman, D.P., Condon, A.G., The significance of a two-phase growth response to salinity in wheat and barley (1995) Aust J Plant Physiol, 13, pp. 143-160
  • Neumann, G., Massonneau, A., Martinoia, E., Romheld, V., Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin (1999) Planta, 208, pp. 373-382
  • Niu, X., Bressan, R.A., Hasegawa, P.M., Pardo, J.M., Ion homeostasis in NaCl stress environments (1995) Plant Physiol, 109, pp. 735-742
  • Radić, S., Prolić, M., Pavlica, M., Pevalek-Kozlina, B., Cytogenetic effects of osmotic stress on the root meristem cells of Centaurea ragusina L (2005) Environ Exp Bot, 54, pp. 213-218
  • Rea, P.A., Sanders, D., Tonoplast energisation: two H + pumps, one membrane (1987) Physiol Plant, 71, pp. 131-141
  • Reinoso, H., Sosa, L., Ramírez, L., Luna, V., Salt-induced changes in the vegetative anatomy of Prosopis strombulifera (Leguminosae) (2004) Can J Bot, 82, pp. 618-628
  • Rengel, A., Römheld, V., Root exudation and Fe uptake and transport in wheat genotypes differing in tolerance to Zn deficiency (2000) Plant Soil, 222, pp. 25-34
  • Sannazzaro, A.I., Ruiz, O., Albertó, E., Menéndez, A., Alleviation of salt stress in Lotus glaber by Glomus intraradices (2006) Plant Soil, 285, pp. 279-287
  • Sannazzaro, A.I., Echeverria, M., Albertó, E.O., Ruiz, O.A., Menéndez, A.B., Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhiza (2007) Plant Physiol Biochem, 45, pp. 39-46
  • Shelp, B.J., Physiology and biochemistry of boron in plants (1993) Boron and Its Role in Crop Production, pp. 53-85. , U. C. Gupta (Ed.), Boca Raton: CRC Press
  • Shi, D.C., Relaxation of Na 2CO 3 stress on Puccinellia tenuiflora (Griseb.) Scibn. Et Merr. plants by neutralizing with H 3PO 4 (1995) Acta Prataculturae Sin, 3, pp. 34-38
  • Shi, D., Sheng, Y., Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors (2005) Environ Exp Bot, 54, pp. 8-21
  • Shi, D., Sheng, Y., Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag (2005) Plant Soil, 271, pp. 15-26
  • Shi, D.C., Wang, D., Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag (2005) Plant Soil, 271, pp. 15-26
  • Shi, D.C., Yin, L.J., Difference between salt (NaCl) and alkaline (Na 2CO 3) stresses on Puccinellia tenuiflora (Griseb.) Scribn et Merr. plants (1993) Acta Bot Sin, 35, pp. 144-149
  • Sinha, P., Jain, R., Chatterjee, C., Interactive effect of boron and zinc on growth and metabolism of mustard (2000) Commun Soil Sci Plant Anal, 31, pp. 41-49
  • Sorgonà, A., Cacco, G., Linking the physiological parameters of nitrate uptake with root morphology and topology in wheat (Triticum durum) and citrus (Citrus volkameriana) rootstock (2002) Can J Bot, 80, pp. 494-503
  • Tang, C., Turner, N.C., The influence of alkalinity and water stress on the stomatal conductance, photosynthetic rate and growth of Lupinus angustifolius L. and Lupinus pilosus Murr (1999) Aust J Exp Agric, 39, pp. 457-464
  • Tanji, K.K., Nature and extent of agricultural salinity (1990) Agricultural Salinity Assessment and Management, pp. 1-18. , K. K. Tanji (Ed.), New York: American Society of Civil Engineers
  • Teakle, N.L., Real, D., Colmer, T.D., Growth and ion relations in response to combined salinity and waterlogging in the perennial forage legume Lotus corniculatus and Lotus tenuis (2006) Plant Soil, 289, pp. 369-383
  • Teakle, N.L., Flowers, T.J., Real, D., Colmer, T.D., Lotus tenuis tolerates the interactive effects of salinity and waterlogging by 'excluding' Na + and Cl - from the xylem (2007) J Exp Bot, 58 (8), pp. 2169-2180
  • Tester, M., Davenport, R., Na + tolerance and Na + transport in plants (2003) Ann Bot, 91, pp. 503-527
  • Torrey, J.G., Chemical factors limiting lateral root formation in isolated pea roots (1956) Physiol Plant, 9, pp. 370-388
  • Trencia, J., Identification de descripteurs morphometriques sensibles aux conditions generales de croissance des semis de chene rouge (Quercus rubra) en milieu natural (1995) Can J Forest Res, 25, pp. 157-165
  • Troll, W., Lindsley, J., The photometric methods to determination of proline (1955) J Biol Chem, 215, pp. 655-660
  • Valdez-Aguilar, L.A., Reed, D.W., Response of selected greenhouse ornamental plants to alkalinity in irrigation water (2007) J Plant Nutr, 30, pp. 441-452
  • Valdez-Aguilar, L.A., Reed, D.W., Influence of potassium substitution by rubidium and sodium on growth, ion accumulation, and ion partitioning in bean under high alkalinity (2008) J Plant Nutr, 31, pp. 867-883
  • Vigo, C., Therios, I.N., Bosabalidis, A.M., Plant growth, nutrient concentration, and leaf anatomy of olive plants irrigated with diluted seawater (2005) J Plant Nutr, 28 (6), pp. 1001-1021
  • Waisel, Y., Breckle, S.W., Differences in responses of various radish roots to salinity (1987) Plant Soil, 104, pp. 191-194
  • Wang, Y., Guo, J.X., Meng, Q.L., Cui, X.Y., Physiological responses of krishum (Iris lactea Pall. var. chinensis Koidz) to neutral and alkaline salts (2008) J Agron Crop Sci, 194, pp. 429-437
  • Yang, C., Chong, J., Changyou, L., Kim, C., Shi, D., Wang, D., Osmotic adjustment and ion balance traits of an alkali resistant halophyte Kochia sieversiana during adaptation to salt and alkali conditions (2007) Plant Soil, 294, pp. 263-276
  • Yang, C., Shi, D., Wang, D., Comparative effects of salt and alkali stresses on growth, osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge) (2008) Plant Growth Regul, 56, pp. 179-190
  • Yeo, A.R., Molecular biology of salt tolerance in the context of whole-plant physiology (1998) J Exp Bot, 49, pp. 915-929

Citas:

---------- APA ----------
Paz, R.C., Rocco, R.A., Reinoso, H., Menéndez, A.B., Pieckenstain, F.L. & Ruiz, O.A. (2012) . Comparative Study of Alkaline, Saline, and Mixed Saline-Alkaline Stresses with Regard to Their Effects on Growth, Nutrient Accumulation, and Root Morphology of Lotus tenuis. Journal of Plant Growth Regulation, 31(3), 448-459.
http://dx.doi.org/10.1007/s00344-011-9254-4
---------- CHICAGO ----------
Paz, R.C., Rocco, R.A., Reinoso, H., Menéndez, A.B., Pieckenstain, F.L., Ruiz, O.A. "Comparative Study of Alkaline, Saline, and Mixed Saline-Alkaline Stresses with Regard to Their Effects on Growth, Nutrient Accumulation, and Root Morphology of Lotus tenuis" . Journal of Plant Growth Regulation 31, no. 3 (2012) : 448-459.
http://dx.doi.org/10.1007/s00344-011-9254-4
---------- MLA ----------
Paz, R.C., Rocco, R.A., Reinoso, H., Menéndez, A.B., Pieckenstain, F.L., Ruiz, O.A. "Comparative Study of Alkaline, Saline, and Mixed Saline-Alkaline Stresses with Regard to Their Effects on Growth, Nutrient Accumulation, and Root Morphology of Lotus tenuis" . Journal of Plant Growth Regulation, vol. 31, no. 3, 2012, pp. 448-459.
http://dx.doi.org/10.1007/s00344-011-9254-4
---------- VANCOUVER ----------
Paz, R.C., Rocco, R.A., Reinoso, H., Menéndez, A.B., Pieckenstain, F.L., Ruiz, O.A. Comparative Study of Alkaline, Saline, and Mixed Saline-Alkaline Stresses with Regard to Their Effects on Growth, Nutrient Accumulation, and Root Morphology of Lotus tenuis. J. Plant Growth Regul. 2012;31(3):448-459.
http://dx.doi.org/10.1007/s00344-011-9254-4