Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Background Lettuce is a globally important leafy vegetable and a model plant for biotechnology due to its adaptability to tissue culture and stable genetic transformation. Lettuce is also crucial for functional genomics research in the Asteraceae which includes species of great agronomical importance. The development of transgenic events implies the production of a large number of shoots that must be differentiated between transgenic and non-transgenic through the activity of the selective agent, being kanamycin the most popular. Results In this work we adjusted the selection conditions of transgenic seedlings to avoid any escapes, finding that threshold concentration of kanamycin was 75 mg/L. To monitor the selection system, we studied the morphological response of transgenic and non-transgenic seedlings in presence of kanamycin to look for a visual morphological marker. Several traits like shoot length, primary root length, number of leaves, fresh weight, and appearance of the aerial part and development of lateral roots were affected in non-transgenic seedlings after 30 d of culture in selective media. However, only lateral root development showed an early, qualitative and reliable association with nptII presence, as corroborated by PCR detection. Applied in successive transgenic progenies, this method of selection combined with morphological follow-up allowed selecting the homozygous presence of nptII gene in 100% of the analyzed plants from T2 to T5. Conclusions This protocol allows a simplified scaling-up of the production of multiple homozygous transgenic progeny lines in the early generations avoiding expensive and time-consuming molecular assays. © 2017

Registro:

Documento: Artículo
Título:Simplified methodology for large scale isolation of homozygous transgenic lines of lettuce
Autor:Darqui, F.S.; Radonic, L.M.; López, N.; Hopp, H.E.; López Bilbao, M.
Filiación:Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Nicolás Repetto y De Los Reseros S/N, Hurlingham, Provincia de Buenos Aires, Argentina
Consejo Nacional de Investigaciones Científicas y Técnicas, Av. Rivadavia 1917, Ciudad Autónoma de Buenos Aires, Argentina
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, Argentina
Palabras clave:Homozygosis; Kanamycin; Lactuca sativa L.; Lines; nptII; Plants; Root; Seed; Seedling; Selection; Transgenesis; Nucleic acids; Seed; Tissue culture; Homozygosis; Kanamycins; Lactuca sativa L; Lines; nptII; Plants; Root; Seedling; Selection; Transgenesis; Plants (botany); kanamycin; Article; biological monitoring; biological trait; concentration (parameters); controlled study; crop production; homozygote; lettuce; methodology; nonhuman; nptII gene; plant gene; plant leaf; plant parameters; plant structures; polymerase chain reaction; progeny; root development; root length; seedling; separation technique; shoot; transgenic plant; weight
Año:2018
Volumen:31
Página de inicio:1
Página de fin:9
DOI: http://dx.doi.org/10.1016/j.ejbt.2017.10.002
Título revista:Electronic Journal of Biotechnology
Título revista abreviado:Electron. J. Biotechnol.
ISSN:07173458
CAS:kanamycin, 11025-66-4, 61230-38-4, 8063-07-8
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_07173458_v31_n_p1_Darqui

Referencias:

  • Mou, B., Nutritional quality of lettuce (2012) Curr Nutr Food Sci, 8 (3), pp. 177-187. , https://doi.org/10.2174/157340112802651121
  • Curtis, I.S., Lettuce (Lactuca sativa L.) (2006) Methods Mol. Biol. Agrobacterium Protoc. 2/e, 343, pp. 449-458. , https://doi.org/10.1385/1-59745-130-4:449, K. Wang Humana Press
  • Kim, D.H., Xu, Z.-Y., Hwang, I., AtHSP17.8 overexpression in transgenic lettuce gives rise to dehydration and salt stress resistance phenotypes through modulation of ABA-mediated signaling (2013) Plant Cell Rep, 32 (12), pp. 1953-1963. , https://doi.org/10.1007/s00299-013-1506-2
  • Hirai, T., Shohael, A.M., Kim, Y.-W., Ubiquitin promoter-terminator cassette promotes genetically stable expression of the taste-modifying protein miraculin in transgenic lettuce (2011) Plant Cell Rep, 30 (12), pp. 2255-2265. , https://doi.org/10.1007/s00299-011-1131-x
  • Stevens, P.F., Angiosperm phylogeny website http://www.mobot.org/MOBOT/research/APweb/, Available from Internet: [cited date May 1, 2017]; Dempewolf, H., Rieseberg, L.H., Cronk, Q.C., Crop domestication in the compositae: a family-wide trait assessment (2008) Genet Resour Crop Evol, 55 (8), pp. 1141-1157. , https://doi.org/10.1007/s10722-008-9315-0
  • Passricha, N., Saifi, S., Khatodia, S., Assessing zygosity in progeny of transgenic plants: current methods and perspectives (2016) J Biol Methods, 3 (3), pp. 1-13. , https://doi.org/10.14440/jbm.2016.114
  • Miki, B., McHugh, S., Selectable marker genes in transgenic plants: applications, alternatives and biosafety (2004) J Biotechnol, 107 (3), pp. 193-232. , https://doi.org/10.1016/j.jbiotec.2003.10.011
  • Huy, N.-X., Yang, M.-S., Kim, T.-G., Expression of a cholera toxin B subunit-neutralizing epitope of the porcine epidemic diarrhea virus fusion gene in transgenic lettuce (Lactuca sativa L.) (2011) Mol Biotechnol, 48, pp. 201-209. , https://doi.org/10.1007/s12033-010-9359-1
  • Matsui, T., Takita, E., Sato, T., Production of double repeated B subunit of Shiga toxin 2e at high levels in transgenic lettuce plants as vaccine material for porcine edema disease (2011) Transgenic Res, 20 (4), pp. 735-748. , https://doi.org/10.1007/s11248-010-9455-9
  • Rosales-Mendoza, S., Soria-Guerra, R., Moreno-Fierros, L., Expression of an immunogenic F1-V fusion protein in lettuce as a plant-based vaccine against plague (2010) Planta, 232 (2), pp. 409-416. , https://doi.org/10.1007/s00425-010-1176-z
  • Kawazu, Y., Fujiyama, R., Noguchi, Y., Detailed characterization of Mirafiori lettuce virus-resistant transgenic lettuce (2010) Transgenic Res, 19 (2), pp. 211-220. , https://doi.org/10.1007/s11248-009-9300-1
  • Bowen, B.A., Markers for plant gene transfer (1993) Transgenic plants, Eng. Util, 1, pp. 89-124. , S. Kung R. Wu Academic Press Inc
  • Padilla, I.M.G., Burgos, L., Aminoglycoside antibiotics: structure, functions and effects on in vitro plant culture and genetic transformation protocols (2010) Plant Cell Rep, 29 (11), pp. 1203-1213. , https://doi.org/10.1007/s00299-010-0900-2
  • Harrison, S.J., Mott, E.K., Parsley, K., A rapid and robust method of identifying transformed Arabidopsis thaliana seedlings following floral dip transformation (2006) Plant Methods, 2, p. 19. , https://doi.org/10.1186/1746-4811-2-19
  • Visarada, K.B.R.S., Saikishore, N., Kuriakose, S.V., A simple model for selection and rapid advancement of transgenic progeny in sorghum (2008) Plant Biotechnol Rep, 2 (1), pp. 47-58. , https://doi.org/10.1007/s11816-008-0048-5
  • Almasia, N.I., Bazzini, A.A., Hopp, H.E., Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants (2008) Mol Plant Pathol, 9 (3), pp. 329-338. , https://doi.org/10.1111/j.1364-3703.2008.00469.x
  • Curtis, I.S., Power, J.B., Blackhall, N.W., Genotype-independent transformation of lettuce using Agrobacterium tumefaciens (1994) J Exp Bot, 45 (10), pp. 1441-1449. , https://doi.org/10.1093/jxb/45.10.1441
  • Karimi, M., Inzé, D., Depicker, A., GATEWAY™ vectors for Agrobacterium-mediated plant transformation (2002) Trends Plant Sci, 7 (5), pp. 193-195. , https://doi.org/10.1016/S1360-1385(02)02251-3
  • Murashige, T., Skoog, F., A revised medium for rapid growth and bio assays with tobacco tissue cultures (1962) Physiol Plant, 15 (3), pp. 473-497. , https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  • Murray, M.G., Thompson, W.F., Rapid isolation of high molecular weight plant DNA (1980) Nucleic Acids Res, 8 (19), pp. 4321-4326. , https://doi.org/10.1093/nar/8.19.4321
  • Michiels, A., Van den Ende, W., Tucker, M., Extraction of high-quality genomic DNA from latex-containing plants (2003) Anal Biochem, 315 (1), pp. 85-89. , https://doi.org/10.1016/S0003-2697(02)00665-6
  • Green, M.R., Sambrook, J., Molecular cloning: A laboratory manual (2012), 1. , 4th ed Cold Spring Harbor Laboratory Press New York; Di Rienzo, J., Casanoves, F., Balzarini, M., InfoStat (2016) Grupo InfoStat, , http://www.infostat.com.ar, FCA, Universidad Nacional de Córdoba Argentina URL
  • Nap, J.P., Bijvoet, J., Stiekema, W.J., Biosafety of kanamycin-resistant transgenic plants (1992) Transgenic Res, 1 (6), pp. 239-249. , https://doi.org/10.1007/BF02525165
  • Radonic, L.M., Zimmermann, J.M., Zavallo, D., Rooting in Km selective media as efficient in vitro selection method for sunflower genetic transformation (2006) Electron J Biotechnol, 9. , https://doi.org/10.2225/vol9-issue3-fulltext-19
  • Duan, H., Ding, X., Hong, D.A., Zhou, C., Lu, L., Effects of kanamycin on growth and development of Arabidopsis Thaliana seedling and its root (2008) Sci. Ann. from Univ. “Alexandru Ioan Cuza” Genet. Mol. Biol. Sect. tome IX, pp. 45-49
  • Duan, H., Ding, X., Song, J., Effects of kanamycin on growth and development of Arabidopsis thaliana seedling, cotyledon and leaf (2009) Pak J Bot, 41 (4), pp. 1611-1618

Citas:

---------- APA ----------
Darqui, F.S., Radonic, L.M., López, N., Hopp, H.E. & López Bilbao, M. (2018) . Simplified methodology for large scale isolation of homozygous transgenic lines of lettuce. Electronic Journal of Biotechnology, 31, 1-9.
http://dx.doi.org/10.1016/j.ejbt.2017.10.002
---------- CHICAGO ----------
Darqui, F.S., Radonic, L.M., López, N., Hopp, H.E., López Bilbao, M. "Simplified methodology for large scale isolation of homozygous transgenic lines of lettuce" . Electronic Journal of Biotechnology 31 (2018) : 1-9.
http://dx.doi.org/10.1016/j.ejbt.2017.10.002
---------- MLA ----------
Darqui, F.S., Radonic, L.M., López, N., Hopp, H.E., López Bilbao, M. "Simplified methodology for large scale isolation of homozygous transgenic lines of lettuce" . Electronic Journal of Biotechnology, vol. 31, 2018, pp. 1-9.
http://dx.doi.org/10.1016/j.ejbt.2017.10.002
---------- VANCOUVER ----------
Darqui, F.S., Radonic, L.M., López, N., Hopp, H.E., López Bilbao, M. Simplified methodology for large scale isolation of homozygous transgenic lines of lettuce. Electron. J. Biotechnol. 2018;31:1-9.
http://dx.doi.org/10.1016/j.ejbt.2017.10.002