Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor


Background: Functional genetic markers have important implications for genetic analysis by providing direct estimation of functional diversity. Although high throughput sequencing techniques for functional diversity analysis are being developed nowadays, the use of already well established variable markers present in candidate genes is still an interesting alternative for mapping purposes and functional diversity studies. SSR markers are routinely used in most plant and animal breeding programs for many species including Eucalyptus. SSR markers derived from candidate genes (SSR-CG) can be used effectively in co-segregation studies and marker-assisted diversity management. Results: In the present study, eight new non reported SSRs were identified in seven candidate genes for wood properties in Eucalyptus globulus: cinnamoyl CoA reductase (CCR), homocysteine S-methyltransferase (HMT), shikimate kinase (SK), xyloglucan endotransglycosylase 2 (XTH2), cellulose synthase 3 (CesA3), glutathione S-transferase (GST) and the transcription factor LIM1. Microsatellites were located in promoters, introns and exons, being most of them CT dinucleotide repeats. Genetic diversity of these eight CG-derived SSR-markers was explored in 54 unrelated genotypes. Except for XTH2, high levels of polymorphism were detected: 93 alleles (mean of 13.1 sd 1.6 alleles per locus), a mean effective number of alleles (Ne) of 5.4 (sd 1.6), polymorphic information content values (PIC) from 0.617 to 0.855 and probability of Identity (PI) ranging from 0.030 to 0.151. Conclusions: This is the first report on the identification, characterization and diversity analysis of microsatellite markers located inside wood quality candidate genes (CG) from Eucalyptus globulus. This set of markers is then appropriate for characterizing genetic variation, with potential usefulness for quantitative trait loci (QTL) mapping in different eucalypts genetic pedigrees and other applications such as fingerprinting and marker assisted diversity management. © 2012 by Pontificia Universidad Católica de Valparaíso, Chile.


Documento: Artículo
Título:Microsatellite markers in candidate genes for wood properties and its application in functional diversity assessment in Eucalyptus globulus
Autor:Acuña, C.V.; Villalba, P.V.; García, M.; Pathauer, P.; Esteban Hopp, H.; Marcucci Poltri, S.N.
Filiación:Instituto Nacional de Tecnología Agropecuaria, Instituto de Biotecnología e Instituto de Recursos Biológicos, CNIA, Castelar, Argentina
Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
Palabras clave:Functional markers; Genetic diversity; Lignin pathway; SSR; Wood density; Breeding program; Candidate genes; Cellulose synthase; Co-segregation; Dinucleotides; Diversity analysis; Eucalyptus globulus; Functional diversity; Functional markers; Genetic analysis; Genetic diversity; Genetic markers; Genetic variation; Glutathione-S-transferase; High throughput; Homocysteines; Information contents; Microsatellite markers; Microsatellites; Other applications; Quantitative trait loci mappings; Shikimate kinase; SSR; SSR markers; Wood density; Xyloglucans; Biodiversity; Biomarkers; DNA sequences; Forestry; Plants (botany); Transcription factors; Genes; article; cellulose synthase 3 gene; cinnamoyl CoA reductase gene; dinucleotide repeat; Eucalyptus globulus; exon; gene locus; genetic polymorphism; genetic variability; genotype; glutathione S transferase gene; homocysteine S methyltransferase gene; intron; microsatellite marker; nonhuman; nucleotide sequence; plant gene; promoter region; shikimate kinase gene; simple sequence repeat; transcription factor LIM1 gene; wood; xyloglucan endotransglycosylase 2 gene; Biodiversity; Estimation; Eucalyptus Globulus; Forestry; Functional Groups; Genes; Lignins; Nucleic Acids; Plants; Wood Density; Animalia; Eucalyptus; Eucalyptus globulus
Página de inicio:12
Página de fin:28
Título revista:Electronic Journal of Biotechnology
Título revista abreviado:Electron. J. Biotechnol.


  • Acuña, C., Fernandez, P., Villalba, P., García, M., Hopp, E., Marcucci Poltri, S., Discovery, validation and in silico functional characterization of EST-SSR markers in Eucalyptus globulus (2011) Tree Genetics and Genomes, Online first, , [CrossRef]
  • Andersen, J.R., Lubberstedt, T., Functional markers in plants (2003) Trends in Plant Science, 8 (11), pp. 554-560. , [CrossRef]
  • Arnaud, D., Dejardin, A., Leple, J-.C., Lesage-Descauses, M.C., Pilate, G., Genome-wide analysis of LIM gene family in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa (2007) DNA Research, 14 (3), pp. 103-116. , [CrossRef]
  • Botstein, D., White, R.L., Skolnick, M., Davis, R.W., Construction of genetic linkage map in man using restriction length polymorphisms (1980) The American Journal of Human Genetics, 32 (3), pp. 314-331
  • Brondani, R.P., Brondani, C., Grattapaglia, D., Towards a genus-wide reference linkage map for Eucalyptus based exclusively on highly informative microsatellite markers (2002) Molecular Genetics and Genomics, 267 (3), pp. 338-347. , [CrossRef]
  • Brondani, R.P., Williams, E.R., Brondani, C., Grattapaglia, D., A microsatellite-based consensus linkage map for species of Eucalyptus and a novel set of 230 microsatellite markers for the genus (2006) BMC Plant Biology, 6 (20). , [CrossRef]
  • Bundock, P.C., Hayden, M., Vaillancourt, R.E., Linkage maps of Eucalyptus globulus using RAPD and microsatellite markers (2000) Silvae Genetica, 49 (4-5), pp. 223-232
  • Butcher, P.A., McDonald, M.W., Bell, J.C., Congruence between environmental parameters, morphology and genetic structure in Australia's most widely distributed eucalypt, Eucalyptus camaldulensis (2009) Tree Genetics & Genomes, 5 (1), pp. 189-210. , [CrossRef]
  • Byrne, M., Marquezgarcia, M.I., Uren, T., Smith, D.S., Moran, G.F., Conservation and genetic diversity of Microsatellite loci in the genus Eucalyptus (1996) Australian Journal of Botany, 44 (3), pp. 331-341. , [CrossRef]
  • Chakraborty, R., Jin, L., A unified approach to study hyper-variable polymorphisms: Statistical considerations of determining relatedness and population distances (1993) DNA fingerprinting: State of the Science, pp. 153-175. , In: PENA, S.D.J.; CHAKRABORTY, R.; EPPLEN, J.T. and JEFFREYS, A.J. eds., Basel, Birkhauser
  • Chybicki, I.J., Burczyk, J., Simultaneous estimation of null alleles and inbreeding coefficients (2009) Journal of Heredity, 100 (1), pp. 106-113. , [CrossRef]
  • Conesa, A., Götz, S., Garcia-Gomez, J.M., Terol, J., Talon, M., Robles, M., Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research (2005) Bioinformatics, 21 (18), pp. 3674-3676. , [CrossRef]
  • Creux, N.M., Ranik, M., Berger, D.K., Myburg, A.A., Comparative analysis of orthologous cellulose synthase promoters from Arabidopsis, Populus and Eucalyptus: Evidence of conserved regulatory elements in angiosperms (2008) New Phytologist, 179 (3), pp. 722-737. , [CrossRef]
  • Dean, J.V., Devarenne, T.P., Lee, I.S., Orlofsky, L.E., Properties of a maize glutathione S-transferase that conjugates coumaric acid and other phenylpropanoids (1995) Plant Physiology, 108 (3), pp. 985-994
  • Dean, J.V., Devarenne, T.P., Peroxidase-mediated conjugation of glutathione to unsaturated phenylpropanoids. Evidence against glutathione S-transferase involvement (1997) Physiologia Plantarum, 99 (2), pp. 271-278. , [CrossRef]
  • Dutkowski, G.W., Potts, B.M., Geographic patterns of genetic variation in Eucalyptus globulus ssp. globulus and a revised racial classification (1999) Australian Journal of Botany, 47 (2), pp. 237-263. , [CrossRef]
  • Eckert, A.J., Pande, B., Ersoz, E.S., Wright, M.H., Rashbrook, V.K., Nicolet, C.M., Neale, D.B., High-throughput genotyping and mapping of single nucleotide polymorphisms in loblolly pine (Pinus taeda L.) (2009) Tree Genetics & Genomes, 5 (1), pp. 225-234. , [CrossRef]
  • Edwards, R., Dixon, D.P., Walbot, V., Plant glutathione S-transferases: Enzymes with multiple functions in sickness and in health (2000) Trends in Plant Science, 5 (5), pp. 193-198. , [CrossRef]
  • Evans, R., Ilic, J., Rapid prediction of wood stiffness from microfibril angle and density (2001) Forest Products Journal, 51 (3), pp. 53-57
  • Faria, D.A., Mamani, E.M.C., Pappas, M.R., Pappas Jr., G.J., Grattapaglia, D., A selected set of EST-derived microsatellites, polymorphic and transferable across 6 species of Eucalyptus (2010) Journal of Heredity, 101 (4), pp. 512-520. , [CrossRef]
  • Faria, D.A., Mamani, E.M.C., Pappas, G.J., Grattapaglia, D., Genotyping systems for Eucalyptus based on tetra-, penta-, and hexanucleotide repeat EST microsatellites and their use for individual fingerprinting and assignment tests (2011) Tree Genetics & Genomes, 7 (1), pp. 63-77. , [CrossRef]
  • Foucart, C., Paux, E., Ladouce, N., San-Clemente, H., Grima-Pettenati, J., Sivadon, P., Transcript profiling of a xylem vs phloem cDNA subtractive library identifies new genes expressed during xylogenesis in Eucalyptus (2006) New Phytologist, 170 (4), pp. 739-752. , [CrossRef]
  • Freeman, J.S., Whittock, S.P., Potts, B.M., Vaillancourt, R.E., QTL influencing growth and wood properties in Eucalyptus globulus (2009) Tree Genetics & Genomes, 5 (4), pp. 713-722. , [CrossRef]
  • Genovesi, V., Fornalé, S., Fry, S.C., Ruel, K., Ferrer, P., Encina, A., Sonbol, F.M., Caparrós-Ruiz, D., ZmXTH1, a new xyloglucan endotransglucosylase/hydrolase in maize, affects cell wall structure and composition in Arabidopsis thaliana (2008) Journal of Experimental Botany, 59 (4), pp. 875-889. , [CrossRef]
  • Gion, J.M., Rech, P., Grima-Pettenati, J., Verhaegen, D., Plomion, C., Mapping candidate genes in Eucalyptus with emphasis on lignification genes (2000) Molecular Breeding, 6 (5), pp. 441-449. , [CrossRef]
  • Gion, J.M., Boudet, C., Grima-Pettenati, J., Pichavant, F.H., Plomion, C., Bailleres, H., Verhaegen, D., A candidate genes approach identifies CCR, PAL and C4H as loci for syringyl/guaiacyl ratio in an interespecific hybrid between E. urophylla and E. grandis (2001) International Union of Forest Research Organizations Conference: Developing the eucalypt of the future, , In: IUFRO-(10th-15th September, 2001, Valdivia, Chile). Abstract
  • Gion, J.M., Carouche, A., Deweer, S., Bedon, F., Pichavant, F., Charpentier, J.P., Bailleres, H., Plomion, C., Comprehensive genetic dissection of wood properties in a widely-grown tropical tree: Eucalyptus (2011) BMC Genomics, 12 (301). , [CrossRef]
  • Goicoechea, M., Lacombe, E., Legay, S., Mihaljevic, S., Rech, P., Jauneau, A., Lapierre, C., Grima-Pettenati, J., EgMYB2, a new transcriptional activator from Eucalyptus xylem, regulates secondary cell wall formation and lignin biosynthesis (2005) The Plant Journal, 43 (4), pp. 553-567. , [CrossRef]
  • Grattapaglia, D., Sederoff, R.R., Genetic linkage map of Eucalyptus grandis and Eucalyptus urophylla using a Pseudo-Testcross: Mapping strategy and RAPD markers (1994) Genetics, 137 (4), pp. 1121-1137
  • Grattapaglia, D., Kirst, M., Eucalyptus applied genomics: From gene sequences to breeding tools (2008) New Phytology, 179 (4), pp. 911-929. , [CrossRef]
  • Grattapaglia, D., Silva-Junior, O., Kirst, M., de Lima, B., Faria, D., Pappas, G., High-throughput SNP genotyping in the highly heterozygous genome of Eucalyptus: Assay success, polymorphism and transferability across species (2011) BMC Plant Biology, 11 (65). , [CrossRef]
  • Herrmann, K.M., Weaver, L.M., The shikimate pathway (1999) Annual Review of Plant Physiology and Plant Molecular Biology, 50, pp. 473-503. , [CrossRef]
  • Hertzberg, M., Aspeborg, H., Schrader, J., Andersson, A., Erlandsson, R., Blomqvist, K., Bhalerao, R., Sandberg, G., A transcriptional roadmap to wood formation (2001) Proceedings of the National Academy of Sciences of the United States of America, 98 (25), pp. 14732-14737. , [CrossRef]
  • Hoisington, D., Khairallah, M., Gonzalez-De-Leon, D., Laboratory protocols: CIMMYT (1994) Applied Molecular Genetics Laboratory, , 3rd edition. CIMMYT, Mexico, D.F. 102 p. ISBN 968-6923-30-6
  • Hrmova, M., Farkas, V., Lahnstein, J., Fincher, G.B., A Barley xyloglucan xyloglucosyl transferase covalently links xyloglucan, cellulosic substrates, and (1,3;1,4)-β-D-glucans (2007) The Journal of Biological Chemistry, 282 (17), pp. 12951-12962. , [CrossRef]
  • Israelsson, M., Eriksson, M.E., Hertzberg, M., Aspeborg, H., Nilsson, P., Moritz, T., Changes in gene expression in the wood-forming tissue of transgenic hybrid aspen with increased secondary growth (2003) Plant Molecular Biology, 52 (4), pp. 893-903. , [CrossRef]
  • Jones, L., Ennos, A.R., Turner, S.R., Cloning and characterization of irregular xylem4 (irx4): A severely lignin-deficient mutant of Arabidopsis (2001) The Plant Journal, 26 (2), pp. 205-216. , [CrossRef]
  • Kampranis, S.C., Damianova, R., Atallah, M., Toby, G., Kondi, G., Tsichlis, P.N., Makris, A.M., A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast (2000) The Journal of Biological Chemistry, 275 (38), pp. 29207-29216. , [CrossRef]
  • Kawaoka, A., Nanto, K., Ishii, K., Ebinuma, H., Reduction of lignin content by suppression of expression of the LIM domain transcription factor in Eucalyptus camaldulensis (2006) Silvae Genetica, 55 (6), pp. 269-277
  • Kilili, K.G., Atanassova, N., Vardanyan, A., Clatot, N., Al-Sabarna, K., Kanellopoulos, P.N., Makris, A.M., Kampranis, S.C., Differential roles of tau class glutathione S-transferases in oxidative stress (2004) The Journal of Biological Chemistry, 279 (23), pp. 24540-24551. , [CrossRef]
  • Kirst, M., Myburg, A.A., De León, J.P.G., Kirst, M.E., Scott, J., Sederoff, R., Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of eucalyptus (2004) Plant Physiology, 135 (4), pp. 2368-2378. , [CrossRef]
  • Kumpatla, S.P., Mukhopadhyay, S., Mining and survey of simple sequence repeats in expressed sequence tags of dicotyledonous species (2005) Genome, 48 (6), pp. 985-998. , [CrossRef]
  • Lacombe, E., Hawkins, S., Doorsselaere, J.V., Piquemal, J., Goffner, D., Poeydomenge, O., Boudet, A.M., Grima-Pettenati, J., Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: Cloning, expression and phylogenetic relationships (1997) Plant Journal, 11 (3), pp. 429-441. , [CrossRef]
  • Lacombe, E., Van Doorsselaere, J., Boerjan, W., Boudet, A.M., Grima-Pettenati, J., Characterization of cis-elements required for vascular expression of the cinnamoyl CoA reductase gene and for protein-DNA complex formation (2000) The Plant Journal, 23 (5), pp. 663-676. , [CrossRef]
  • Langella, O., Populations 1.2.32 (2002) Logiciel de génétique des populations, ,, [cited 5 June 2011]. Available from Internet
  • Li, Y.C., Korol, A.B., Fahima, T., Beiles, A., Nevo, E., Microsatellites: Genomic distribution, putative functions and mutational mechanisms: A review (2002) Molecular Ecology, 11 (12), pp. 2453-2465. , [CrossRef]
  • Li, Y.C., Korol, A.B., Fahima, T., Nevo, E., Microsatellites within genes: Structure, function, and evolution (2004) Molecular Biology and Evolution, 21 (6), pp. 991-1007. , [CrossRef]
  • Loyall, L., Uchida, K., Braun, S., Furuya, M., Frohnmeyer, H., Glutathione and a UV light-induced glutathione S-transferase are involved in signaling to chalcone synthase in cell cultures (2000) The Plant Cell, 12 (10), pp. 1939-1950. , [CrossRef]
  • Marcucci Poltri, S.N., Zelener, N., Rodriguez Traverso, J., Gelid, P., Hopp, H.E., Selection of a seed orchard of Eucalyptus dunnii based on genetic diversity criteria calculated using molecular markers (2003) Tree Physiology, 23 (9), pp. 625-632
  • Marques, C.M., Araujo, J.A., Ferreira, J.G., Whetten, R., O'malley, D.M., Liu, B.H., Sederoff, R.R., AFLP genetic maps of Eucalyptus globulus and E. tereticornis (1998) TAG Theoretical and Applied Genetics, 96 (6-7), pp. 727-737. , [CrossRef]
  • Metzgar, D., Bytof, J., Wills, C., Selection against frameshift mutations limits microsatellite expansion in coding DNA (2000) Genome Research, 10 (1), pp. 72-80
  • Molina, C., Grotewold, E., Genome wide analysis of Arabidopsis core promoters (2005) BMC Genomics, 6 (25). , [CrossRef]
  • Moran, G.F., Thamarus, K., Raymond, C.A., Qiu, D., Uren, T., Southerton, S.G., Genomics of Eucalyptus wood traits (2002) Annals of Forest Science, 59 (5-6), pp. 645-650. , [CrossRef]
  • Morgante, M., Hanafey, M., Powell, W., Microsatellites are preferentially associated with non-repetitive DNA in plant genomes (2002) Nature Genetics, 30 (2), pp. 194-200. , [CrossRef]
  • Mueller, L.A., Goodman, C.D., Silady, R.A., Walbot, V., AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein (2000) Plant Physiology, 123 (4), pp. 1561-1570. , [CrossRef]
  • Myburg, A.A., Potts, B.M., Marques, C.M., Kirst, M., Gion, J.M., Grattapaglia, D., Grima-Pettenati, J., Eucalyptus. In: CHITTARANJAN, K. ed. Genome mapping and molecular breeding in plants (2007) Forest Trees, New York, NY, USA: Springer, 7, pp. 115-160
  • Nascimento De Sousa, S., Finkeldey, R., Gailing, O., Experimental verification of microsatellite null alleles in Norway spruce (Picea abies [L.] Karst.): Implications for population genetic studies (2005) Plant Molecular Biology Reporter, 23 (2), pp. 113-119. , [CrossRef]
  • Neves, L.G., Mamani, E.M.C., Alfenas, A.C., Kirst, M., Grattapaglia, D., A high-density transcript linkage map with 1,845 expressed genes positioned by microarray-based Single Feature Polymorphisms (SFP) in Eucalyptus (2011) BMC Genomics, 12 (189). , [CrossRef]
  • Novaes, E., Drost, D., Farmerie, W., Pappas, G., Grattapaglia, D., Sederoff, R., Kirst, M., High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome (2008) BMC Genomics, 9 (312). , [CrossRef]
  • Paux, E., Tamasloukht, M., Ladouce, N., Sivadon, P., Grima-Pettenati, J., Identification of genes preferentially expressed during wood formation in Eucalyptus (2004) Plant Molecular Biology, 55 (2), pp. 263-280. , [CrossRef]
  • Paux, E., Carocha, V., Marques, C., Mendes De Sousa, A., Borralho, N., Sivadon, P., Grima-Pettenati, J., Transcript profiling of Eucalyptus xylem genes during tension wood formation (2005) New Phytology, 167 (1), pp. 89-100. , [CrossRef]
  • Peakall, R., Smouse, P.E., GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research (2006) Molecular Ecology Notes, 6 (1), pp. 288-295. , [CrossRef]
  • Poke, F.S., Vaillancourt, R.E., Elliott, R.C., Reid, J.B., Sequence variation in two lignin biosynthesis genes, cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase 2 (CAD2) (2003) Molecular Breeding, 12 (2), pp. 107-118. , [CrossRef]
  • Poke, F.S., Raymond, C.A., Reid, J.B., Vaillancourt, R.E., The effect of a single amino acid substitution in a lignin biosynthesis enzyme on wood properties in Eucalyptus globules (2004) Eucalyptus in a Changing World-International IUFRO Conference, pp. 388-394. , In: (11th-14th October 2004, Aveiro, Portugal)
  • Poke, F.S., Vaillancourt, R.E., Potts, B.M., Reid, J.B., Genomic research in Eucalyptus (2005) Genetica, 125 (1), pp. 79-101. , [CrossRef]
  • Ranik, M., Myburg, A.A., Six new cellulose synthase genes from Eucalyptus are associated with primary and secondary cell wall biosynthesis (2006) Tree Physiology, 26 (5), pp. 545-556. , [CrossRef]
  • Raymond, C.A., Apiolaza, L.A., Incorporating wood quality and deployment traits in Eucalyptus globulus and Eucalyptus nitens. In: WALTER, C. and CARSON, M. eds (2004) Plantation Forest Biotechnology for the 21st Century, 5, pp. 87-89
  • Rengel, D., Clemente, H.S., Servant, F., Ladouce, N., Paux, E., Wincker, P., Couloux, A., Grima-Pettenati, J., A new genomic resource dedicated to wood formation in Eucalyptus (2009) BMC Plant Biology, 9 (36). , [CrossRef]
  • Sexton, T.R., Henry, R.J., Harwood, C.E., Thomas, D., McManus, L.J., Raymond, C., Henson, M., Shepherd, M., Pectin methylesterase genes influence solid wood properties of Eucalyptus pilularis (2012) Plant Physiology, 158 (1), pp. 531-541. , [CrossRef]
  • Stackpole, D.J., Vaillancourt, R.E., Alves, A.M., Rodrigues, J., Potts, B.M., Genetic variation in the chemical components of Eucalyptus globulus wood (2011) G3 Genes Genomes Genetics, 1 (2), pp. 151-159
  • Steane, D., Conod, N., Jones, R., Vaillancourt, R., Potts, B., A comparative analysis of population structure of a forest tree, Eucalyptus globulus (Myrtaceae), using microsatellite markers and quantitative traits (2006) Tree Genetics & Genomes, 2 (1), pp. 30-38. , [CrossRef]
  • Tang, J., Baldwin, S.J., Jacobs, J.M., Linden, C.G., Voorrips, R.E., Leunissen, J.A.A., Van Eck, H., Vosman, B., Large-scale identification of polymorphic microsatellites using an in silico approach (2008) BMC Bioinformatics, 9 (374). , [CrossRef]
  • Thamarus, K.A., Groom, K., Murrell, J., Byrne, M., Moran, G.F., A genetic linkage map for Eucalyptus globulus with candidate loci for wood, fibre, and floral traits (2002) TAG Theoretical and Applied Genetics, 104 (2-3), pp. 379-387. , [CrossRef]
  • Thom, R., Cummins, I., Dixon, D.P., Edwards, R., Cole, D.J., Lapthorn, A.J., Structure of a tau class glutathione S-transferase from wheat active in herbicide detoxification (2002) Biochemistry, 41 (22), pp. 7008-7020. , [CrossRef]
  • Thumma, B.R., Nolan, M.F., Evans, R., Moran, G.F., Polymorphisms in Cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp (2005) Genetics, 171 (3), pp. 1257-1265. , [CrossRef]
  • Thumma, B.R., Southerton, S.G., Bell, J.C., Owen, J.V., Henery, M.L., Moran, G.F., Quantitative trait locus (QTL) analysis of wood quality traits in Eucalyptus nitens (2010) Tree Genetics & Genomes, 6 (2), pp. 305-317. , [CrossRef]
  • Verhaegen, D., Plomion, C., Genetic mapping in Eucalyptus urophylla and E. grandis. RAPD markers (1996) Genome, 39 (6), pp. 1051-1061. , [CrossRef]
  • Wegrzyn, J.L., Eckert, A.J., Choi, M., Lee, J.M., Stanton, B.J., Sykes, R., Davis, M.F., Neale, D.B., Association genetics of traits controlling lignin and cellulose biosynthesis in black cottonwood (Populus trichocarpa, Salicaceae) secondary xylem (2010) New Phytologist, 188 (2), pp. 515-532. , [CrossRef]
  • Zhang, X., Yazaki, J., Sundaresan, A., Cokus, S., Chan, S.W., Chen, H., Henderson, I.R., Ecker, J.R., Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis (2006) Cell, 126 (6), pp. 1189-1201. , [CrossRef]


---------- APA ----------
Acuña, C.V., Villalba, P.V., García, M., Pathauer, P., Esteban Hopp, H. & Marcucci Poltri, S.N. (2012) . Microsatellite markers in candidate genes for wood properties and its application in functional diversity assessment in Eucalyptus globulus. Electronic Journal of Biotechnology, 15(2), 12-28.
---------- CHICAGO ----------
Acuña, C.V., Villalba, P.V., García, M., Pathauer, P., Esteban Hopp, H., Marcucci Poltri, S.N. "Microsatellite markers in candidate genes for wood properties and its application in functional diversity assessment in Eucalyptus globulus" . Electronic Journal of Biotechnology 15, no. 2 (2012) : 12-28.
---------- MLA ----------
Acuña, C.V., Villalba, P.V., García, M., Pathauer, P., Esteban Hopp, H., Marcucci Poltri, S.N. "Microsatellite markers in candidate genes for wood properties and its application in functional diversity assessment in Eucalyptus globulus" . Electronic Journal of Biotechnology, vol. 15, no. 2, 2012, pp. 12-28.
---------- VANCOUVER ----------
Acuña, C.V., Villalba, P.V., García, M., Pathauer, P., Esteban Hopp, H., Marcucci Poltri, S.N. Microsatellite markers in candidate genes for wood properties and its application in functional diversity assessment in Eucalyptus globulus. Electron. J. Biotechnol. 2012;15(2):12-28.