Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

With the goal of bringing theory, particularly numerical relativity, to bear on an astrophysical problem of critical interest to gravitational wave observers we introduce a model for coalescence radiation from binary black hole systems. We build our model using the Lazarus approach, a technique that bridges far and close limit approaches with full numerical relativity to solve Einstein equations applied in the truly nonlinear dynamical regime. We specifically study the post-orbital radiation from a system of equal-mass non-spinning black holes, deriving waveforms which indicate strongly circularly polarized radiation of roughly 3% of the system's total energy and 12% of its total angular momentum in just a few cycles. To support this result we first establish the reliability of the late-time part of our model, including the numerical relativity and close-limit components, with a thorough study of waveforms from a sequence of black hole configurations that varies from previously treated head-on collisions to a representative target for "ISCO" data corresponding to the end of the inspiral period. We then complete our model with a simple treatment for the early part of the spacetime based on a standard family of initial data for binary black holes in circular orbit. A detailed analysis shows strong robustness in the results as the initial separation of the black holes is increased from 5.0 to 7.8M supporting our waveforms as a suitable basic description of the astrophysical radiation from this system. Finally, a simple fitting of the plunge waveforms is introduced as a first attempt to facilitate the task of analyzing data from gravitational wave detectors. © 2002 The American Physical Society.

Registro:

Documento: Artículo
Título:Modeling gravitational radiation from coalescing binary black holes
Autor:Baker, J.; Campanelli, M.; Lousto, C.O.; Takahashi, R.
Filiación:Laboratory for High Energy Astrophysics, NASA Goddard Space Flight Center, Greenbelt, MD 20771, United States
Department of Physics and Astronomy, University of Texas at Brownsville, Brownsville, TX 78520, United States
Instituto de Astronomía y Física del Espacio, CONICET, Buenos Aires, Argentina
Theoretical Astrophysics Center, Dk-2100 Køabenhavn Ø, Denmark
Palabras clave:article; cosmic radiation; cosmos; energy; gravity; mathematical model; nonlinear system; quantum theory; space; time; waveform
Año:2002
Volumen:65
Número:12
DOI: http://dx.doi.org/10.1103/PhysRevD.65.124012
Título revista:Physical Review D
Título revista abreviado:-
ISSN:05562821
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_05562821_v65_n12_p_Baker

Referencias:

  • Abramovici, A.A., Althouse, W., Drever, R.P., Gursel, Y., Kawamura, S., Raab, F., Shoemaker, D., Zuker, M., (1992) Science, 256, p. 325
  • Bradaschia, C., (1990) Nucl. Instrum. Methods Phys. Res. A, 289, p. 518
  • Zwart, S.P., McMillan, S., (2000) Astrophys. J. Lett., 528, pp. L17
  • Zwart, S.P., McMillan, S., (2000) Int. J. Mod. Phys. A, 15, p. 4871
  • Hough, J., (1994) Edoardo Amaldi Meeting on Gravitational Wave Experiments, , prepared for Rome, Italy
  • Schutz, E.B., (2001) Class. Quantum Grav., 18, p. 3965
  • Flanagan, E.E., Hughes, S.A., (1998) Phys. Rev. D, 57, p. 4566
  • Damour, T., Iyer, B.R., Sathyaprakash, B.S., (2001) Phys. Rev. D, 63, p. 044023
  • S.A. Hughes, S. Marka, P.L. Bender, and C.J. Hogan, astro-ph/0110349; For the Binary Black Hole Grand Challenge, , www.npac.syr.edu/projects/bh/
  • Brandt, S., Correll, R., Gomez, R., Huq, M., Laguna, P., Lehner, L., Marronetti, P., Winicour, J., (2000) Phys. Rev. Lett., 85, p. 5496
  • Alcubierre, M., Benger, W., Brügmann, B., Lanfermann, G., Nerger, L., Seidel, E., Takahashi, R., (2001) Phys. Rev. Lett., 87, p. 271103
  • Baker, J., Brandt, S.R., Campanelli, M., Lousto, C.O., Seidel, E., Takahashi, R., (2000) Phys. Rev. D, 62, p. 127701
  • Baker, J., Brügmann, B., Campanelli, M., Lousto, C.O., Takahashi, R., (2001) Phys. Rev. Lett., 87, p. 121103
  • Cook, G.B., (1994) Phys. Rev. D, 50, p. 5025
  • Baumgarte, T.W., (2000) Phys. Rev. D, 62, p. 024018
  • Buonanno, A., Damour, T., (2000) Phys. Rev. D, 62, p. 064015
  • Baker, J., Campanelli, M., Lousto, C.O., (2002) Phys. Rev. D, 65, p. 044001
  • Teukolsky, S.A., (1973) Astrophys. J., 185, p. 635
  • Lousto, C.O., (2001) Phys. Rev. D, 63, p. 047504
  • Baker, J., Brügmann, B., Campanelli, M., Lousto, C.O., (2000) Class. Quantum Grav., 17, pp. L149
  • Baker, J., Abrahams, A., Anninos, P., Brandt, S., Price, R., Pullin, J., Seidel, E., (1997) Phys. Rev. D, 55, p. 829
  • Anninos, P., Price, R.H., Pullin, J., Seidel, E., Suen, W.-M., (1995) Phys. Rev. D, 52, p. 4462
  • Bowen, J., York, J.W., (1980) Phys. Rev. D, 21, p. 2047
  • Brandt, S., Brügmann, B., (1997) Phys. Rev. Lett., 78, p. 3606
  • Marronetti, P., Matzner, R., (2000) Phys. Rev. Lett., 85, p. 5500
  • Grandclement, P., Gourgoulhon, E., Bonazzola, S., (2002) Phys. Rev. D, 65, p. 044021
  • Cook, G.B., (2002) Phys. Rev. D, 65, p. 084003
  • Dain, S., Lousto, C.O., Takahashi, R., (2002) Phys. Rev. D, 65, p. 104038
  • B. Brügmann, M. Campanelli, P. Diener, and W. Tichy (in preparation); http://www.cactuscode.org; Alcubierre, M., Allen, G., Brügmann, B., Seidel, E., Suen, W.-M., (2000) Phys. Rev. D, 62, p. 124011
  • Baker, J., Campanelli, M., (2000) Phys. Rev. D, 62, p. 127501
  • Alcubierre, M., Brandt, S., Brügmann, B., Gundlach, C., Massó, J., Walker, P., (2000) Class. Quantum Grav., 17, p. 2159
  • Echeverría, F., (1989) Phys. Rev. D, 40, p. 3194
  • Gleiser, R., Khanna, G., Price, R.H., Pullin, J., (2000) New J. Phys., 2, p. 3
  • Frittelli, S., Gomez, R., (2000) J. Math. Phys., 41, p. 5535
  • Campanelli, M., Lousto, C.O., (1999) Phys. Rev. D, 59, p. 124022
  • Abrahams, A., Price, R., (1996) Phys. Rev. D, 53, p. 1972
  • Buonanno, A., Damour, T., (1999) Phys. Rev. D, 59, p. 084006
  • Damour, T., Jaranowski, P., Schaefer, G., (2000) Phys. Rev. D, 62, p. 084011
  • Damour, T., Jaranowski, P., Schafer, G., (2001) Phys. Lett. B, 513, p. 147
  • Damour, T., Iyer, B.R., Sathyaprakash, B.S., (1998) Phys. Rev. D, 57, p. 885
  • Blanchet, L., (2002) Phys. Rev. D, 65, p. 124009
  • Damour, T., Jaranowski, P., Schafer, G., (2001) Phys. Rev. D, 63, p. 044021
  • Blanchet, L., Iyer, B.R., Will, C.M., Wiseman, A.G., (1996) Class. Quantum Grav., 13, p. 575
  • note

Citas:

---------- APA ----------
Baker, J., Campanelli, M., Lousto, C.O. & Takahashi, R. (2002) . Modeling gravitational radiation from coalescing binary black holes. Physical Review D, 65(12).
http://dx.doi.org/10.1103/PhysRevD.65.124012
---------- CHICAGO ----------
Baker, J., Campanelli, M., Lousto, C.O., Takahashi, R. "Modeling gravitational radiation from coalescing binary black holes" . Physical Review D 65, no. 12 (2002).
http://dx.doi.org/10.1103/PhysRevD.65.124012
---------- MLA ----------
Baker, J., Campanelli, M., Lousto, C.O., Takahashi, R. "Modeling gravitational radiation from coalescing binary black holes" . Physical Review D, vol. 65, no. 12, 2002.
http://dx.doi.org/10.1103/PhysRevD.65.124012
---------- VANCOUVER ----------
Baker, J., Campanelli, M., Lousto, C.O., Takahashi, R. Modeling gravitational radiation from coalescing binary black holes. -. 2002;65(12).
http://dx.doi.org/10.1103/PhysRevD.65.124012