Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Magnetic composites of cobalt ferrite nanoparticles and poly(aniline) have been synthesized in acid media and characterized by X-ray diffraction studies, scanning and transmission electron microscopy observation, thermogravimetric analysis, conductivity and infrared spectroscopy measurements. The magnetic behavior was studied through DC magnetization measurements; hysteresis loops were observed, showing ferromagnetic behavior for particles and composites. The remanence ratio increases as the polymer contents increases, the coercivity decreases first and then increases, and the saturation magnetization does not follow the ferrite mass fraction in the composite. It is proposed that an indirect exchange mechanism (RKKY-like) between the nanoparticles and PANI localized spins mediated by the conduction electrons is responsible for the observed magnetic behavior. The results suggest the presence of particle-matrix interactions related to the amount of polymer present, thus, in turn suggesting that the material magnetic properties could be controlled through the nanoparticles to polymer ratio. © 2014 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Magnetic composites of CoFe2O4 nanoparticles in a poly(aniline) matrix: Enhancement of remanence ratio and coercivity
Autor:Antonel, P.S.; Berhó, F.M.; Jorge, G.; Molina, F.V.
Filiación:Instituto de Química Física de Materiales, Ambiente Y Energía (INQUIMAE), Facultad de Ciencias Exactas Y Naturales, Universidad de Buenos Aires, Piso 1, Buenos Aires, C1428EGA, Argentina
Instituto de Ciencias, Universidad Nacional de General Sarmiento, Juan M. Gutiérrez 1150, Los Polvorines, Provincia de Buenos Aires B1613GSX, Argentina
Palabras clave:Magnetic properties; Nanostructures; Oxides; Aniline; Coercive force; Ferrite; Infrared spectroscopy; Magnetic materials; Magnetic properties; Nanoparticles; Nanostructures; Oxides; Polyaniline; Polymers; Remanence; Saturation magnetization; Scanning electron microscopy; Synthesis (chemical); Thermogravimetric analysis; Transmission electron microscopy; X ray diffraction; Cobalt ferrite nanoparticles; Conduction electrons; Ferromagnetic behaviors; Magnetic composites; Particle-matrix interactions; Scanning and transmission electron microscopy; Spectroscopy measurements; X-ray diffraction studies; Nanomagnetics
Año:2015
Volumen:199
Página de inicio:292
Página de fin:302
DOI: http://dx.doi.org/10.1016/j.synthmet.2014.12.003
Título revista:Synthetic Metals
Título revista abreviado:Synth Met
ISSN:03796779
CODEN:SYMED
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03796779_v199_n_p292_Antonel

Referencias:

  • Kodama, R.H., Magnetic nanoparticles (1999) J. Magn. Magn. Mater., 200, pp. 359-372
  • Chowdhury, S.R., Yanful, E.K., Arsenic and chromium removal by mixed magnetite-maghemite nanoparticles and the effect of phosphate on removal (2010) J. Environ. Manage., 91, pp. 2238-2247. , http://dx.doi.org/10.1016/j.jenvman.2010.06.003
  • Beveridge, J.S., Stephens, J.R., Williams, M.E., The use of magnetic nanoparticles in analytical chemistry (2011) Annu. Rev. Anal. Chem., 4, pp. 251-273. , http://dx.doi.org/10.1146/annurev-anchem-061010-114041
  • Leslie-Pelecky, D.L., Rieke, R.D., Magnetic properties of nanostructured materials (1996) Chem. Mater., 8, pp. 1770-1783. , http://dx.doi.org/10.1021/cm960077f
  • Dormann D, J.L., Tronc, F.E., Magnetic relaxation in fine-particle systems (2007) Adv. Chem. Phys., 98, pp. 283-494. , http://onlinelibrary.wiley.com/doi/10.1002/9780470141571ch4/summary, I. Prigogine, S.A. Rice (Eds.), John Wiley & Sons, Inc., New York, accessed 10.08.12
  • Jin, J., Hashimoto, K., Ohkoshi, S., Formation of spherical and rod-shaped ε-Fe2O3 nanocrystals with a large coercive field (2005) J. Mater. Chem., 15, p. 1067. , http://dx.doi.org/10.1039/b416554c
  • Tavakoli, A., Sohrabi, M., Kargari, A., A review of methods for synthesis of nanostructured metals with emphasis on iron compounds (2007) Chem. Pap., 61, pp. 151-170. , http://dx.doi.org/10.2478/s11696-007-0014-7
  • Kim, Y.I., Kim, D., Lee, C.S., Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method (2003) Physica B Condens. Matter, 337, pp. 42-51. , http://dx.doi.org/10.1016/S0921-4526(03)00322-3
  • Mu, G., Pan, X., Chen, N., Gan, K., Gu, M., Preparation and magnetic properties of barium hexaferrite nanorods (2008) Mater. Res. Bull., 43, pp. 1369-1375. , http://dx.doi.org/10.1016/j.materresbull.2007.06.052
  • Leven, B., Dumpich, G., Resistance behavior and magnetization reversal analysis of individual Co nanowires (2005) Phys. Rev. B, 71, p. 64411. , http://dx.doi.org/10.1103/PhysRevB.71.064411
  • Chen, H., Tang, D., Zhang, B., Liu, B., Cui, Y., Chen, G., Electrochemical immunosensor for carcinoembryonic antigen based on nanosilver-coated magnetic beads and gold-graphene nanolabels (2012) Talanta, 91, pp. 95-102. , http://dx.doi.org/10.1016/j.talanta.2012.01.025
  • Mazarío, E., Herrasti, P., Morales, M.P., Menéndez, N., Synthesis and characterization of CoFe2O4 ferrite nanoparticles obtained by an electrochemical method (2012) Nanotechnology, 23, p. 355708. , http://dx.doi.org/10.1088/0957-4484/23/35/355708
  • Shin, S., Jang, J., Thiol containing polymer encapsulated magnetic nanoparticles as reusable and efficiently separable adsorbent for heavy metal ions (2007) Chem. Commun., 4230. , http://dx.doi.org/10.1039/b707706h
  • Antonel, P.S., Jorge, G., Perez, O.E., Butera, A., Leyva, A.G., Negri, R.M., Magnetic and elastic properties of CoFe2O4-polydimethylsiloxane magnetically oriented elastomer nanocomposites (2011) J. Appl. Phys., 110, pp. 43920-439208. , http://dx.doi.org/10.1063/1.3624602
  • Chandrasekhar, P., (1999) Conducting Polymers, Fundamentals and Applications: A Practical Approach, First Ed., , Springer, New York
  • Lizarraga, L., Andrade, E.M., Molina, F.V., Swelling and volume changes of polyaniline upon redox switching (2004) J. Electroanal. Chem., 561, pp. 127-135. , http://dx.doi.org/10.1016/j.jelechem.2003.07.026
  • Antonel, P.S., Völker, E., Molina, F.V., Photophysics of polyaniline: Sequence-length distribution dependence of photoluminescence quenching as studied by fluorescence measurements and Monte Carlo simulations (2012) Polymer, 53, pp. 2619-2627. , http://dx.doi.org/10.1016/j.polymer.2012.04.041
  • Guo, Z., Shin, K., Karki, A.B., Young, D.P., Kaner, R.B., Hahn, H.T., Fabrication and characterization of iron oxide nanoparticles filled polypyrrole nanocomposites (2009) J. Nanopart. Res., 11, pp. 1441-1452. , http://dx.doi.org/10.1007/s11051-008-9531-8
  • Priya, C.S., Velraj, G., Synthesis and characterization of nano and micro copper doped conducting polymer (2012) Mater. Lett., 77, pp. 29-31. , http://dx.doi.org/10.1016/j.matlet.2012.02.112
  • Singh, K., Ohlan, A., Saini, P., Dhawan, S.K., Poly (3,4-ethylenedioxythiophene) γ-Fe2O3 polymer composite-super paramagnetic behavior and variable range hopping 1D conduction mechanism-synthesis and characterization (2008) Polym. Adv. Technol., 19, pp. 229-236. , http://dx.doi.org/10.1002/pat.1003
  • Dallas, P., Moutis, N., Devlin, E., Niarchos, D., Petridis, D., Characterization, electrical and magnetic properties of polyaniline/maghemite nanocomposites (2006) Nanotechnology, 17, pp. 5019-5026. , http://dx.doi.org/10.1088/0957-4484/17/19/041
  • Zhang, Y.-J., Lin, Y.-W., Chang, C.-C., Wu, T.-M., Conducting and magnetic behaviors of polyaniline coated multi-walled carbon nanotube composites containing monodispersed magnetite nanoparticles (2011) Synth. Met., 161, pp. 937-942. , http://dx.doi.org/10.1016/j.synthmet.2011.02.026
  • Gandhi, N., Singh, K., Ohlan, A., Singh, D.P., Dhawan, S.K., Thermal, dielectric and microwave absorption properties of polyaniline-CoFe2O4 nanocomposites (2011) Compos. Sci. Technol., 71, pp. 1754-1760. , http://dx.doi.org/10.1016/j.compscitech.2011.08.010
  • Zhang, X., Wei, S., Haldolaarachchige, N., Colorado, H.A., Luo, Z., Young, D.P., Magnetoresistive conductive polyaniline-barium titanate nanocomposites with negative permittivity (2012) J. Phys. Chem. C, 116, pp. 15731-15740. , http://dx.doi.org/10.1021/jp303226u
  • Gu, H., Huang, Y., Zhang, X., Wang, Q., Zhu, J., Shao, L., Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties (2012) Polymer, 53, pp. 801-809. , http://dx.doi.org/10.1016/j.polymer.2011.12.033
  • Gu, H., Tadakamalla, S., Huang, Y., Colorado, H.A., Luo, Z., Haldolaarachchige, N., Polyaniline stabilized magnetite nanoparticle reinforced epoxy nanocomposites (2012) ACS Appl. Mater. Interfaces., 4, pp. 5613-5624. , http://dx.doi.org/10.1021/am301529t
  • Zhang, X., Zhu, J., Haldolaarachchige, N., Ryu, J., Young, D.P., Wei, S., Synthetic process engineered polyaniline nanostructures with tunable morphology and physical properties (2012) Polymer, 53, pp. 2109-2120. , http://dx.doi.org/10.1016/j.polymer.2012.02.042
  • Zhu, J., Gu, H., Luo, Z., Haldolaarachige, N., Young, D.P., Wei, S., Carbon nanostructure-derived polyaniline metacomposites: Electrical, dielectric, and giant magnetoresistive properties (2012) Langmuir, 28, pp. 10246-10255. , http://dx.doi.org/10.1021/la302031f
  • Gangopadhyay, R., De, A., Conducting polymer nanocomposites: A brief overview (2000) Chem. Mater., 12, pp. 608-622. , http://dx.doi.org/10.1021/cm990537f
  • Pyun, J., Nanocomposite materials from functional polymers and magnetic colloids (2007) Polym. Rev., 47, pp. 231-263. , http://dx.doi.org/10.1080/15583720701271294
  • Radhakrishnan, S., Prakash, S., Rao, C.R.K., Vijayan, M., Organically soluble bifunctional polyaniline-magnetite composites for sensing and supercapacitor applications (2009) Electrochem. Solid-State Lett., 12, p. A84. , http://dx.doi.org/10.1149/1.3074315
  • Bhaumik, M., Leswifi, T.Y., Maity, A., Srinivasu, V.V., Onyango, M.S., Removal of fluoride from aqueous solution by polypyrrole/Fe3O4 magnetic nanocomposite (2011) J. Hazard. Mater., 186, pp. 150-159. , http://dx.doi.org/10.1016/j.jhazmat.2010.10.098
  • Wuang, S.C., Neoh, K.G., Kang, E.-T., Pack, D.W., Leckband, D.E., Synthesis and functionalization of polypyrrole-Fe3O4 nanoparticles for applications in biomedicine (2007) J. Mater. Chem., 17, pp. 3354-3362. , http://dx.doi.org/10.1039/B702983G
  • Wang, Z., Bi, H., Liu, J., Sun, T., Wu, X., Magnetic and microwave absorbing properties of polyaniline/γ-Fe2O3 nanocomposite (2008) J. Magn. Magn. Mater., 320, pp. 2132-2139. , http://dx.doi.org/10.1016/j.jmmm.2008.03.043
  • Singh, K., Ohlan, A., Bakhshi, A.K., Dhawan, S.K., Synthesis of conducting ferromagnetic nanocomposite with improved microwave absorption properties (2010) Mater. Chem. Phys., 119, pp. 201-207. , http://dx.doi.org/10.1016/j.matchemphys.2009.08.060
  • Belaabed, B., Wojkiewicz, J.L., Lamouri, S., El Kamchi, N., Lasri, T., Synthesis and characterization of hybrid conducting composites based on polyaniline/magnetite fillers with improved microwave absorption properties (2012) J. Alloys Compd., 527, pp. 137-144. , http://dx.doi.org/10.1016/j.jallcom.2012.02.179
  • Anand, J., Palaniappan, S., Sathyanarayana, D., Conducting polyaniline blends and composites (1998) Prog. Polym. Sci., 23, pp. 993-1018. , http://dx.doi.org/10.1016/S0079-6700(97)00040-3
  • Prasanna, G.D., Jayanna, H.S., Lamani, A.R., Dash, S., Polyaniline/CoFe2O4 nanocomposites: A novel synthesis, characterization and magnetic properties (2011) Synth. Met., 161, pp. 2306-2311. , http://dx.doi.org/10.1016/j.synthmet.2011.08.039
  • Chen, A., Wang, H., Zhao, B., Li, X., The preparation of polypyrrole-Fe3O4 nanocomposites by the use of common ion effect (2003) Synth. Met., 139, pp. 411-415. , http://dx.doi.org/10.1016/S0379-6779(03)00190-5
  • Montoya, P., Jaramillo, F., Calderón, J., Córdoba De Torresi, S.I., Torresi, R.M., Evidence of redox interactions between polypyrrole and Fe3O4 in polypyrrole-Fe3O4 composite films (2010) Electrochim. Acta, 55, pp. 6116-6122. , http://dx.doi.org/10.1016/j.electacta.2009.09.042
  • Deng, J., Peng, Y., He, C., Long, X., Li, P., Chan, A.S.C., Magnetic and conducting Fe3O4-polypyrrole nanoparticles with core-shell structure (2003) Polym. Int., 52, pp. 1182-1187. , http://dx.doi.org/10.1002/pi.1237
  • Xuan, S., Wang, Y.-X.J., Yu, J.C., Leung, K.C.-F., Preparation, characterization, and catalytic activity of core/shell Fe3O4@polyaniline@Au nanocomposites (2009) Langmuir, 25, pp. 11835-11843. , http://dx.doi.org/10.1021/la901462t
  • Sun, S., Zeng, H., Robinson, D.B., Raoux, S., Rice, P.M., Wang, S.X., Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles (2004) J. Am. Chem. Soc., 126, pp. 273-279. , http://dx.doi.org/10.1021/ja0380852
  • Rasband, W., (2012) Image J, , National Institute of Health, Research Services Branch, Bethesda, Maryland, USA
  • Qu, Y., Yang, H., Yang, N., Fan, Y., Zhu, H., Zou, G., The effect of reaction temperature on the particle size, structure and magnetic properties of coprecipitated CoFe2O4 nanoparticles (2006) Mater. Lett., 60, pp. 3548-3552. , http://dx.doi.org/10.1016/j.matlet.2006.03.055
  • O'Handley, R.C., (1999) Modern Magnetic Materials: Principles and Applications, First Ed., pp. 172+303. , Wiley-Interscience, New York
  • Hu, J.-M., Sheng, G., Zhang, J.X., Nan, C.W., Chen, L.Q., Phase-field simulation of strain-induced domain switching in magnetic thin films (2011) Appl. Phys. Lett., 98, pp. 112505-1125053. , http://dx.doi.org/10.1063/1.3567542
  • Gajbhiye, N.S., Prasad, S., Blaji, G., Experimental study of Hopkinson effect in single domain CoFe2O4 particles (1999) IEEE Trans. Magn., 35, pp. 2155-2161. , http://dx.doi.org/10.1109/20.774187
  • Palaniappan, S., Narayana, B.H., Temperature effect on conducting polyaniline salts: Thermal and spectral studies (1994) J. Polym. Sci. A Polym. Chem., 32, pp. 2431-2436. , http://dx.doi.org/10.1002/pola.1994.080321304
  • Prokeš, J., Trchová, M., Hlavatá, D., Stejskal, J., Conductivity ageing in temperature-cycled polyaniline (2002) Polym. Degrad. Stab., 78, pp. 393-401. , http://dx.doi.org/10.1016/S0141-3910(02)00193-3
  • Khairy, M., Synthesis, characterization, magnetic and electrical properties of polyaniline/NiFe2O4 nanocomposite (2014) Synth. Met., 189, pp. 34-41. , http://dx.doi.org/10.1016/j.synthmet.2013.12.022
  • Wang, S., Tan, Z., Li, Y., Sun, L., Zhang, T., Synthesis, characterization and thermal analysis of polyaniline/ZrO2 composites (2006) Thermochim. Acta, 441, pp. 191-194. , http://dx.doi.org/10.1016/j.tca.2005.05.020
  • Gök, A., Sari, B., Talu, M., Synthesis and characterization of conducting substituted polyanilines (2004) Synth. Met., 142, pp. 41-48. , http://dx.doi.org/10.1016/j.synthmet.2003.07.002
  • Li, Y., Chen, G., Li, Q., Qiu, G., Liu, X., Facile synthesis, magnetic and microwave absorption properties of Fe3O4/polypyrrole core/shell nanocomposite (2011) J. Alloys Compd., 509, pp. 4104-4107. , http://dx.doi.org/10.1016/j.jallcom.2010.12.100
  • Rakić, A., Bajuk-Bogdanović, D., Mojović, M., Ćirić-Marjanović, G., Milojević-Rakić, M., Mentus, S., Oxidation of aniline in dopant-free template-free dilute reaction media (2011) Mater. Chem. Phys., 127, pp. 501-510. , http://dx.doi.org/10.1016/j.matchemphys.2011.02.047
  • Andrade, E.M., Molina, F.V., Florit, M.I., Posadas, D., IR response of poly(o-toluidine): Spectral modifications upon redox state change (1996) J. Electroanal. Chem., 419, pp. 15-21
  • Antonel, P.S., Andrade, E.M., Molina, F.V., Copolymerization of aniline and m-chloroaniline. Chlorine addition and structure of the resulting material (2009) React. Funct. Polym., 69, pp. 197-205
  • Trchová, M., Stejskal, J., Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (2011) Pure Appl. Chem., 83, pp. 1803-1817. , http://dx.doi.org/10.1351/PAC-REP-10-02-01, IUPAC Technical Report
  • Kang, E.T., Neoh, K.G., Tan, K.L., Polyaniline: A polymer with many interesting intrinsic redox states (1998) Prog. Polym. Sci., 23, pp. 277-324. , http://dx.doi.org/10.1016/S0079-6700(97)00030-0
  • Israel, L., Güler, Ç., Yilmaz, H., Güler, S., The adsorption of polyvinylpyrrolidone on kaolinite saturated with sodium chloride (2001) J. Colloid Interface Sci., 238, pp. 80-84. , http://dx.doi.org/10.1006/jcis.2001.7465
  • Cao, Y., Li, S., Xue, Z., Guo, D., Spectroscopic and electrical characterization of some aniline oligomers and polyaniline (1986) Synth. Met., 16, pp. 305-315. , http://dx.doi.org/10.1016/0379-6779(86)90167-0
  • McCall, R.P., Roe, M.G., Ginder, J.M., Kusumoto, T., Epstein, A.J., Asturias, G.E., IR absorption, photoinduced IR absorption, and photoconductivity of polyaniline (1989) Synth. Met., 29, pp. 433-438. , http://dx.doi.org/10.1016/0379-6779(89)90329-9
  • Kulszewicz-Bajer, I., Sobczak, J., Hasik, M., Pretula, J., Spectroscopic studies of polyaniline protonation with poly(alkylene phosphates) (1996) Polymer, 37, pp. 25-30. , http://dx.doi.org/10.1016/0032-3861(96)81596-5
  • Sariciftci, N.S., Bartonek, M., Kuzmany, H., Neugebauer, H., Neckel, A., Analysis of various doping mechanisms in polyaniline by optical, FTIR and Raman spectroscopy (1989) Synth. Met., 29, pp. 193-202. , http://dx.doi.org/10.1016/0379-6779(89)90296-8
  • Trchová, M., Morávková, Z., Šeděnková, I., Stejskal, J., Spectroscopy of thin polyaniline films deposited during chemical oxidation of aniline (2012) Chem. Pap., 66, pp. 415-445. , http://dx.doi.org/10.2478/s11696-012-0142-6
  • Berkowitz, A.E., Lahut, J.A., Jacobs, I.S., Levinson, L.M., Forester, D.W., Spin pinning at ferrite-organic interfaces (1975) Phys. Rev. Lett., 34, pp. 594-597. , http://dx.doi.org/10.1103/PhysRevLett.34.594
  • Vázquez-Vázquez, C., López-Quintela, M., Buján-Núñez, M., Rivas, J., Finite size and surface effects on the magnetic properties of cobalt ferrite nanoparticles (2011) J. Nanopart. Res., 13, pp. 1663-1676. , http://dx.doi.org/10.1007/s11051-010-9920-7
  • Stearns, M.B., Cheng, Y., Determination of para- and ferromagnetic components of magnetization and magnetoresistance of granular Co/Ag films (1994) J. Appl. Phys., 75, p. 6894. , http://dx.doi.org/10.1063/1.356773, invited
  • Maaz, K., Mumtaz, A., Hasanain, S.K., Ceylan, A., Synthesis and magnetic properties of cobalt ferrite (CoFe2O4) nanoparticles prepared by wet chemical route (2007) J. Magn. Magn. Mater., 308, pp. 289-295. , http://dx.doi.org/10.1016/j.jmmm.2006.06.003
  • Bensebaa, F., Zavaliche, F., L'Ecuyer, P., Cochrane, R., Veres, T., Microwave synthesis and characterization of Co-ferrite nanoparticles (2004) J. Colloid Interface Sci., 277, pp. 104-110. , http://dx.doi.org/10.1016/j.jcis.2004.04.016
  • Song, Q., Zhang, Z.J., Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals (2004) J. Am. Chem. Soc., 126, pp. 6164-6168. , http://dx.doi.org/10.1021/ja049931r
  • Mohamed, R.M., Rashad, M.M., Haraz, F.A., Sigmund, W., Structure and magnetic properties of nanocrystalline cobalt ferrite powders synthesized using organic acid precursor method (2010) J. Magn. Magn. Mater., 322, pp. 2058-2064. , http://dx.doi.org/10.1016/j.jmmm.2010.01.034
  • Mørup, S., Hansen, M.F., Frandsen, C., Magnetic interactions between nanoparticles (2010) Beilstein J. Nanotechnol., 1, pp. 182-190. , http://dx.doi.org/10.3762/bjnano.1.22
  • Kittel, C., (1987) Quantum Theory of Solids, Second Revised Edition, , Wiley, New York
  • Krinichnyi, V.I., Konkin, A.L., Monkman, A.P., Electron paramagnetic resonance study of spin centers related to charge transport in metallic polyaniline (2012) Synth. Met., 162, pp. 1147-1155. , http://dx.doi.org/10.1016/j.synthmet.2012.04.030
  • Kahol, P.K., Raghunathan, A., McCormick, B.J., A magnetic susceptibility study of emeraldine base polyaniline (2004) Synth. Met., 140, pp. 261-267. , http://dx.doi.org/10.1016/S0379-6779(03)00371-0
  • Kemp, N.T., Fianagan, G.U., Kaiser, A.B., Trodahl, H.J., Chapman, B., Partridge, A.C., Temperature-dependent conductivity of conducting polymers exposed to gases (1999) Synth. Met., 101, pp. 434-435. , http://dx.doi.org/10.1016/S0379-6779(98)01118-7
  • Pelster, R., Nimtz, G., Wessling, B., Fully protonated polyaniline: Hopping transport on a mesoscopic scale (1994) Phys. Rev. B, 49, pp. 12718-12723. , http://dx.doi.org/10.1103/PhysRevB.49.12718
  • Chen, X., Shen, L., Yuan, C.A., Wong, C.K.Y., Zhang, G., Molecular model for the charge carrier density dependence of conductivity of polyaniline as chemical sensing materials (2013) Sens. Actuators B, 177, pp. 856-861. , http://dx.doi.org/10.1016/j.snb.2012.12.009

Citas:

---------- APA ----------
Antonel, P.S., Berhó, F.M., Jorge, G. & Molina, F.V. (2015) . Magnetic composites of CoFe2O4 nanoparticles in a poly(aniline) matrix: Enhancement of remanence ratio and coercivity. Synthetic Metals, 199, 292-302.
http://dx.doi.org/10.1016/j.synthmet.2014.12.003
---------- CHICAGO ----------
Antonel, P.S., Berhó, F.M., Jorge, G., Molina, F.V. "Magnetic composites of CoFe2O4 nanoparticles in a poly(aniline) matrix: Enhancement of remanence ratio and coercivity" . Synthetic Metals 199 (2015) : 292-302.
http://dx.doi.org/10.1016/j.synthmet.2014.12.003
---------- MLA ----------
Antonel, P.S., Berhó, F.M., Jorge, G., Molina, F.V. "Magnetic composites of CoFe2O4 nanoparticles in a poly(aniline) matrix: Enhancement of remanence ratio and coercivity" . Synthetic Metals, vol. 199, 2015, pp. 292-302.
http://dx.doi.org/10.1016/j.synthmet.2014.12.003
---------- VANCOUVER ----------
Antonel, P.S., Berhó, F.M., Jorge, G., Molina, F.V. Magnetic composites of CoFe2O4 nanoparticles in a poly(aniline) matrix: Enhancement of remanence ratio and coercivity. Synth Met. 2015;199:292-302.
http://dx.doi.org/10.1016/j.synthmet.2014.12.003