Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The hair cells of the vertebrate inner ear posses active mechanical processes to amplify their inputs. The stereocilia bundle of various vertebrate animals can produce active movements. Though standard stereocilia-based mechanisms to promote amplification persist in mammals, an additional radically different mechanism evolved: the so-called somatic electromotility which refers to the elongation/contraction of the outer hair cells' (OHC) cylindrical cell body in response to membrane voltage changes. Somatic electromotility in OHCs, as the basis for cochlear amplification, is a mammalian novelty and it is largely dependent upon the properties of the unique motor protein prestin. We review recent literature which has demonstrated that although the gene encoding prestin is present in all vertebrate species, mammalian prestin has been under positive selective pressure to acquire motor properties, probably rendering it fit to serve somatic motility in outer hair cells. Moreover, we discuss data which indicates that a modified α10 nicotinic cholinergic receptor subunit has co-evolved in mammals, most likely to give the auditory feedback system the capability to control somatic electromotility. © 2010 Elsevier B.V.

Registro:

Documento: Artículo
Título:Prestin and the cholinergic receptor of hair cells: Positively-selected proteins in mammals
Autor:Elgoyhen, A.B.; Franchini, L.F.
Filiación:Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires 1428, Argentina
Departamento de Farmacología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
Palabras clave:cholinergic receptor; molecular motor; nicotinic cholinergic receptor alpha10; nicotinic cholinergic receptor alpha9; nicotinic receptor; prestin; unclassified drug; article; auditory feedback; cell function; cochlea; efferent nerve; hair cell; human; nonhuman; priority journal; protein expression; protein function; protein structure; sequence analysis; sound pressure; species comparison; Amino Acid Sequence; Animals; Biomechanics; Hair Cells, Auditory, Outer; Hearing; Mammals; Molecular Motor Proteins; Molecular Sequence Data; Receptors, Cholinergic
Año:2011
Volumen:273
Número:1-2
Página de inicio:100
Página de fin:108
DOI: http://dx.doi.org/10.1016/j.heares.2009.12.028
Título revista:Hearing Research
Título revista abreviado:Hear. Res.
ISSN:03785955
CODEN:HERED
CAS:Molecular Motor Proteins; Receptors, Cholinergic
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03785955_v273_n1-2_p100_Elgoyhen

Referencias:

  • Adler, H.J., Belyantseva, I.A., Merritt, R.C., Frolenkov, G.I., Dougherty, G.W., Kachar, B., Expression of prestin, a membrane motor protein, in the mammalian auditory and vestibular periphery (2003) Hear. Res., 184, pp. 27-40
  • Albert, J.T., Winter, H., Schaechinger, T.J., Weber, T., Wang, X., He, D.Z., Hendrich, O., Oliver, D., Voltage-sensitive prestin orthologue expressed in zebrafish hair cells (2007) J. Physiol., 580, pp. 451-461
  • Ashmore, J., Cochlear outer hair cell motility (2008) Physiol. Rev., 88, pp. 173-210
  • Assad, J.A., Corey, D.P., An active motor model for adaptation by vertebrate hair cells (1992) J. Neurosci., 12, pp. 3291-3309
  • Blanchet, C., Erostegui, C., Sugasawa, M., Dulon, D., Acetylcholine-induced potassium current of guinea pig outer hair cells: its dependence on a calcium influx through nicotinic-like receptors (1996) J. Neurosci., 16, pp. 2574-2584
  • Brownell, W., Bader, C., Bertrand, D., de Ribaupierre, Y., Evoked mechanical responses of isolated cochlear hair cells (1985) Science, 227, pp. 194-196
  • Chan, D.K., Hudspeth, A.J., Ca2+ current-driven nonlinear amplification by the mammalian cochlea in vitro (2005) Nat. Neurosci., 8, pp. 149-155
  • Changeux, J., Giraudat, J., Dennis, M., The nicotinic acetylcholine receptor: molecular architecture of a ligand-regulated ion channel (1987) Trends Pharmacol. Sci., 8, pp. 459-465
  • Chen, C., LeBlanc, C., Bobbin, R., Differences in cholinergic responses from outer hair cells of rat and guinea pig (1996) Hear. Res., 98, pp. 9-17
  • Crawford, A.C., Fettiplace, R., The mechanical properties of ciliary bundles of turtle cochlear hair cells (1985) J. Physiol., 364, pp. 359-379
  • Dallos, P., Cochlear amplification, outer hair cells and prestin (2008) Curr. Opin. Neurobiol., 18, pp. 370-376
  • Dallos, P., He, D.Z., Lin, X., Sziklai, I., Mehta, S., Evans, B.N., Acetylcholine, outer hair cell electromotility, and the cochlear amplifier (1997) J. Neurosci., 17, pp. 2212-2226
  • Dallos, P., Zheng, J., Cheatham, M.A., Prestin and the cochlear amplifier (2006) J. Physiol., 576, pp. 37-42
  • Dallos, P., Wu, X., Cheatham, M.A., Gao, J., Zheng, J., Anderson, C.T., Jia, S., Zuo, J., Prestin-based outer hair cell motility is necessary for mammalian cochlear amplification (2008) Neuron, 58, pp. 333-339
  • Davis, H., An active process in cochlear mechanics (1983) Hear. Res., 9, pp. 79-90
  • Deak, L., Zheng, J., Orem, A., Du, G.G., Aguinaga, S., Matsuda, K., Dallos, P., Effects of cyclic nucleotides on the function of prestin (2005) J. Physiol., 563, pp. 483-496
  • Dent, J.A., Evidence for a diverse Cys-loop ligand-gated ion channel superfamily in early bilateria (2006) J. Mol. Evol., 62, pp. 523-535
  • Doi, T., Ohmori, H., Acetylcholine increases intracellular Ca2+ concentration and hyperpolarizes the guinea-pig outer hair cell (1993) Hear. Res., 67, pp. 179-188
  • Dulon, D., Lenoir, M., Cholinergic responses in developing outer hair cells of the rat cochlea (1996) Eur. J. Neurosci., 8, pp. 1945-1952
  • Dulon, D., Luo, L., Zhang, C., Ryan, A.F., Expression of small-conductance calcium-activated potassium channels (SK) in outer hair cells of the rat cochlea (1998) Eur. J. Neurosci., 10, pp. 907-915
  • Elgoyhen, A.B., Johnson, D.S., Boulter, J., Vetter, D.E., Heinemann, S., α9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells (1994) Cell, 79, pp. 705-715
  • Elgoyhen, A.B., Vetter, D., Katz, E., Rothlin, C., Heinemann, S., Boulter, J., Alpha 10: a determinant of nicotinic cholinergic receptor function in mammalian vestibular and cochlear mechanosensory hair cells (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 3501-3506
  • Elgoyhen, A.B., Katz, E., Fuchs, P.A., The nicotinic receptor of cochlear hair cells: a possible pharmacotherapeutic target? (2009) Biochem. Pharmacol., 78, pp. 712-719
  • Erostegui, C., Norris, C.H., Bobbin, R.P., In vitro characterization of a cholinergic receptor on outer hair cells (1994) Hear. Res., 74, pp. 135-147
  • Evans, M., Acetylcholine activates two currents in guinea-pig outer hair cells (1996) J. Physiol., 491, pp. 563-578
  • Eybalin, M., Neurotransmitters and neuromodulators of the mammalian cochlea (1993) Physiol. Rev., 73, pp. 309-373
  • Fettiplace, R., Active hair bundle movements in auditory hair cells (2006) J. Physiol., 576, pp. 29-36
  • Franchini, L.F., Elgoyhen, A.B., Adaptive evolution in mammalian proteins involved in cochlear outer hair cell electromotility (2006) Mol. Phylogenet. Evol., 41, pp. 622-635
  • Frings, S., Seifert, R., Godde, M., Kaupp, U.B., Profoundly different calcium permeation and blockage determine the specific function of distinct cyclic nucleotide-gated channels (1995) Neuron, 15, pp. 169-179
  • Fritzsch, B., Development of the labyrinthine efferent system (1996) Ann. NY Acad. Sci., 781, pp. 21-33
  • Fritzsch, B., Ontogenetic and evolutionary evidence for motoneuronal nature of vestibular and cochlear efferents (1999) The Efferent Auditory System: Basic Science and Clinical Applications, pp. 31-60. , Singular Publishing, San Diego, CA, C.I. Berlin (Ed.)
  • Frolenkov, G.I., Mammano, F., Kachar, B., Regulation of outer hair cell cytoskeletal stiffness by intracellular Ca2+: underlying mechanism and implications for cochlear mechanics (2003) Cell Calcium, 33, pp. 185-195
  • Fuchs, P., Synaptic transmission at vertebrate hair cells (1996) Curr. Opin. Neurobiol., 6, pp. 514-519
  • Fuchs, P.A., Murrow, B.W., A novel cholinergic receptor mediates inhibition of chick cochlear hair cells (1992) Proc. R. Soc. Lond. B, 248, pp. 35-40
  • Fuchs, P.A., Murrow, B.W., Cholinergic inhibition of short (outer) hair cells of the chick's cochlea (1992) J. Neurosci., 12, pp. 800-809
  • Galzi, J.-L., Revah, F., Bessis, A., Changuex, J.P., Functional architecture of the nicotinic acetylcholine receptor: from electric organ to brain (1991) Annu. Rev. Pharmacol., 31, pp. 37-72
  • Gao, J., Wang, X., Wu, X., Aguinaga, S., Huynh, K., Jia, S., Matsuda, K., Zuo, J., Prestin-based outer hair cell electromotility in knockin mice does not appear to adjust the operating point of a cilia-based amplifier (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 12542-12547
  • Geleoc, G.S., Holt, J.R., Auditory amplification: outer hair cells pres the issue (2003) Trends Neurosci., 26, pp. 115-117
  • Gold, T., Hearing II: the basis of the action of the cochlea (1948) Proc. R. Soc. B, 135, pp. 492-498
  • Guinan, J.J., Physiology of olivocochlear efferents (1996) The Cochlea, pp. 435-502. , Springer-Verlag, New York, P. Dallos, A.N. Popper, R.R. Fay (Eds.)
  • Gulley, R.L., Reese, T.S., Regional specialization of the hair cell plasmalemma in the organ of corti (1977) Anat. Rec., 189, pp. 109-123
  • He, D.Z., Dallos, P., Development of acetylcholine-induced responses in neonatal gerbil outer hair cells (1999) J. Neurophysiol., 81, pp. 1162-1170
  • Housley, G.D., Ashmore, J.F., Direct measurement of the action of acetylcholine on isolated outer hair cells of the guinea pig cochlea (1991) Proc. R. Soc. Lond. B, 244, pp. 161-167
  • Housley, G.D., Norris, C.H., Guth, P.S., Cholinergically-induced changes in outward currents in hair cells isolated from the semicircular canal of the frog (1990) Hear. Res., 43, pp. 121-133
  • Howard, J., Hudspeth, A.J., Compliance of the hair bundle associated with gating of mechanoelectrical transduction channels in the bullfrog's saccular hair cell (1988) Neuron, 1, pp. 189-199
  • Hudspeth, A.J., Making an effort to listen: mechanical amplification in the ear (2008) Neuron, 59, pp. 530-545
  • Jia, S., He, D.Z., Motility-associated hair-bundle motion in mammalian outer hair cells (2005) Nat. Neurosci., 8, pp. 1028-1034
  • Kaiser, A., Manley, G.A., Physiology of single putative cochlear efferents in the chicken (1994) J. Neurophysiol., 72, pp. 2966-2979
  • Kaiser, A., Manley, G.A., Brainstem connections of the macula lagenae in the chicken (1996) J. Comp. Neurol., 374, pp. 108-117
  • Kakehata, S., Nakagawa, T., Takasaka, T., Akaike, N., Cellular mechanism of acetylcholine-induced response in dissociated outer hair cells of guinea-pig cochlea (1993) J. Physiol. (Lond.), 463, pp. 227-244
  • Karlin, A., Ion channel structure: emerging structure of the nicotinic acetylcholine receptors (2002) Nat. Rev. Neurosci., 3, pp. 102-114
  • Katz, E., Verbitsky, M., Rothlin, C., Vetter, D., Heinemann, S., Elgoyhen, A., High calcium permeability and calcium block of the α9 nicotinic acetylcholine receptor (2000) Hear. Res., 141, pp. 117-128
  • Katz, E., Elgoyhen, A.B., Gomez-Casati, M.E., Knipper, M., Vetter, D.E., Fuchs, P.A., Glowatzki, E., Developmental regulation of nicotinic synapses on cochlear inner hair cells (2004) J. Neurosci., 24, pp. 7814-7820
  • Kemp, D.T., Stimulated acoustic emissions from within the human auditory system (1978) J. Acoust. Soc. Am., 64, pp. 1386-13891
  • Kennedy, H.J., Crawford, A.C., Fettiplace, R., Force generation by mammalian hair bundles supports a role in cochlear amplification (2005) Nature, 433, pp. 880-883
  • Le Novere, N., Changeux, J., Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells (1995) J. Mol. Evol., 40, pp. 155-172
  • Le Novere, N., Corringer, P.J., Changeux, J.P., The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences (2002) J. Neurobiol., 53, pp. 447-456
  • Li, G., Wang, J., Rossiter, S.J., Jones, G., Cotton, J.A., Zhang, S., The hearing gene Prestin reunites echolocating bats (2008) Proc. Natl. Acad. Sci. USA, 105, pp. 13959-13964
  • Liberman, M.C., Gao, J., He, D.Z., Wu, X., Jia, S., Zuo, J., Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier (2002) Nature, 419, pp. 300-304
  • Lioudyno, M., Hiel, H., Kong, J.H., Katz, E., Waldman, E., Parameshwaran-Iyer, S., Glowatzki, E., Fuchs, P.A., A " synaptoplasmic cistern" mediates rapid inhibition of cochlear hair cells (2004) J. Neurosci., 24, pp. 11160-11164
  • Lohi, H., Kujala, M., Kerkela, E., Saarialho-Kere, U., Kestila, M., Kere, J., Mapping of five new putative anion transporter genes in human and characterization of SLC26A6, a candidate gene for pancreatic anion exchanger (2000) Genomics, 70, pp. 102-712
  • Ludwig, J., Oliver, D., Frank, G., Klocker, N., Gummer, A.W., Fakler, B., Reciprocal electromechanical properties of rat prestin: the motor molecule from rat outer hair cells (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 4178-4183
  • Lustig, L.R., Peng, H., Hiel, H., Yamamoto, T., Fuchs, P., Molecular cloning and mapping of the human nicotinic acetylcholine receptor α10 (CHRNA10) (2001) Genomics, 73, pp. 272-283
  • Manley, G.A., Cochlear mechanisms from a phylogenetic viewpoint (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 11736-11743
  • Manley, G.A., Evidence for an active process and a cochlear amplifier in nonmammals (2001) J. Neurophysiol., 86, pp. 541-549
  • Manley, G.A., Koppl, C., Phylogenetic development of the cochlea and its innervation (1998) Curr. Opin. Neurobiol., 8, pp. 468-474
  • Manley, G.A., Kirk, D.L., Koppl, C., Yates, G.K., In vivo evidence for a cochlear amplifier in the hair-cell bundle of lizards (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 2826-2831
  • Martin, P., Hudspeth, A.J., Active hair-bundle movements can amplify a hair cell's response to oscillatory mechanical stimuli (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 14306-14311
  • Martin, P., Hudspeth, A.J., Compressive nonlinearity in the hair bundle's active response to mechanical stimulation (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 14386-14391
  • Martin, P., Bozovic, D., Choe, Y., Hudspeth, A.J., Spontaneous oscillation by hair bundles of the bullfrog's sacculus (2003) J. Neurosci., 23, pp. 4533-4548
  • Mayer, M., Westbrook, G., Permeation and block of N-methyl-d-aspartic acid receptor channels by divalent cations in mouse cultured central neurones (1987) J. Physiol. (Lond.), 394, pp. 501-527
  • McNiven, A.I., Yuhas, W.A., Fuchs, P.A., Ionic dependence and agonist preference of an acetylcholine receptor in hair cells (1996) Audit. Neurosci., 2, pp. 63-77
  • Meredith, G.E., Roberts, B.L., Distribution and morphological characteristics of efferent neurons innervating end organs in the ear and lateral line of the European eel (1987) J. Comp. Neurol., 265, pp. 494-506
  • Mount, D.B., Romero, M.F., The SLC26 gene family of multifunctional anion exchangers (2004) Pflugers Arch., 447, pp. 710-721
  • Mountain, D.C., Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics (1980) Science, 210, pp. 71-72
  • Muallem, D., Ashmore, J., An anion antiporter model of prestin, the outer hair cell motor protein (2006) Biophys. J., 90, pp. 4035-4045
  • Navaratnam, D., Bai, J.P., Samaranayake, H., Santos-Sacchi, J., N-terminal-mediated homomultimerization of prestin, the outer hair cell motor protein (2005) Biophys. J., 89, pp. 3345-3352
  • Nei, M., Gojobori, T., Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions (1986) Mol. Biol. Evol., 3, pp. 418-426
  • Okoruwa, O.E., Weston, M.D., Sanjeevi, D.C., Millemon, A.R., Fritzsch, B., Hallworth, R., Beisel, K.W., Evolutionary insights into the unique electromotility motor of mammalian outer hair cells (2008) Evol. Dev., 10, pp. 300-315
  • Oliver, D., Klocker, N., Schuck, J., Baukrowitz, T., Ruppersberg, J.P., Fakler, B., Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells (2000) Neuron, 26, pp. 595-601
  • Oliver, D., He, D.Z., Klocker, N., Ludwig, J., Schulte, U., Waldegger, S., Ruppersberg, J.P., Fakler, B., Intracellular anions as the voltage sensor of prestin, the outer hair cell motor protein (2001) Science, 292, pp. 2340-2343
  • Ortells, M., Lunt, G., Evolutionary history of the ligand-gated ion-channel superfamily of receptors (1995) Trends Neurosci., 18, pp. 121-127
  • Plazas, P.V., Katz, E., Gomez-Casati, M.E., Bouzat, C., Elgoyhen, A.B., Stoichiometry of the alpha9alpha10 nicotinic cholinergic receptor (2005) J. Neurosci., 25, pp. 10905-10912
  • Rajagopalan, L., Patel, N., Madabushi, S., Goddard, J.A., Anjan, V., Lin, F., Shope, C., Pereira, F.A., Essential helix interactions in the anion transporter domain of prestin revealed by evolutionary trace analysis (2006) J. Neurosci., 26, pp. 12727-12734
  • Rasmussen, G.L., Descending, or " feedback-back" connections of the auditory system of the cat (1955) Am. J. Physiol., 183, p. 653
  • Ricci, A.J., Crawford, A.C., Fettiplace, R., Active hair bundle motion linked to fast transducer adaptation in auditory hair cells (2000) J. Neurosci., 20, pp. 7131-7142
  • Roberts, B., Meredith, G.E., The efferent innervation of the ear: variations on an enigma (1992) The Evolutionary Biology of Hearing, pp. 185-210. , Springer-Verlag, New York, D. Webster, R. Fay, A. Popper (Eds.)
  • Rothlin, C., Verbitsky, M., Katz, E., Elgoyhen, A., The α9 nicotinic acetylcholine receptor shares pharmacological properties with type A γ-aminobutyric acid, glycine and type 3 serotonin receptors (1999) Mol. Pharmacol., 55, pp. 248-254
  • Rothlin, C.V., Katz, E., Verbitsky, M., Vetter, D., Heinemann, S., Elgoyhen, A.B., Block of the α9 nicotinic receptor by ototoxic aminoglycosides (2000) Neuropharmacol., 39, pp. 2525-2532
  • Rothlin, C.V., Lioudyno, M.I., Silbering, A.F., Plazas, P.V., Casati, M.E., Katz, E., Guth, P.S., Elgoyhen, A.B., Direct interaction of serotonin type 3 receptor ligands with recombinant and native alpha 9 alpha 10-containing nicotinic cholinergic receptors (2003) Mol. Pharmacol., 63, pp. 1067-1074
  • Schaechinger, T.J., Oliver, D., Nonmammalian orthologs of prestin (SLC26A5) are electrogenic divalent/chloride anion exchangers (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 7693-7698
  • Schwarz, I.E., Schwarz, D.W., Fredrickson, J.M., Landolt, J.P., Efferent vestibular neurons: a study employing retrograde tracer methods in the pigeon (Columba livia) (1981) J. Comp. Neurol., 196, pp. 1-12
  • Sgard, F., Charpentier, E., Bertrand, S., Walker, N., Caput, D., Graham, D., Bertrand, D., Besnard, F., A novel human nicotinic receptor subunit, α10, that confers functionality to the α9-subunit (2002) Mol. Pharmacol., 61, pp. 150-159
  • Shigemoto, T., Ohmori, H., Muscarinic agonists and ATP increase the intracellular Ca2+ concentration in chick cochlear hair cells (1990) J. Physiol. (Lond.), 420, pp. 127-148
  • Shigemoto, T., Ohmori, H., Muscarinic receptor hyperpolarizes cochlear hair cells of chick by activating Ca(2+)-activated K+ channels (1991) J. Physiol., 442, pp. 669-690
  • Siegel, J.H., Kim, D.O., Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity (1982) Hear. Res., 6, pp. 171-182
  • Simmons, D.D., Development of the inner ear efferent system across vertebrate species (2002) J. Neurobiol., 53, pp. 228-250
  • Sridhar, T.S., Brown, M.C., Sewell, W.F., Unique postsynaptic signaling at the hair cell efferent synapse permits calcium to evoke changes on two time scales (1997) J. Neurosci., 17, pp. 428-437
  • Sziklai, I., Szonyi, M., Dallos, P., Phosphorylation mediates the influence of acetylcholine upon outer hair cell electromotility (2001) Acta Otolaryngol., 121, pp. 153-156
  • Tsunoyama, K., Gojobori, T., Evolution of nicotinic acetylcholine receptor subunits (1998) Mol. Biol. Evol., 15, pp. 518-527
  • Verbitsky, M., Rothlin, C., Katz, E., Elgoyhen, A.B., Mixed nicotinic-muscarinic properties of the α9 nicotinic cholinergic receptor (2000) Neuropharmacol., 39, pp. 2515-2524
  • von Békésy, G., (1960), (Ed.), Experiments in Hearing (translated by Wever, E.G.). McGraw-Hill, New York; Warr, W., Organization of olivocochlear efferent systems in mammals (1992) The Mammalian Auditory Pathway: Neuroanatomy, pp. 410-448. , Springer-Verlag, New York, W. Douglas, A. Popper, R. Fay (Eds.)
  • Weber, T., Gopfert, M.C., Winter, H., Zimmermann, U., Kohler, H., Meier, A., Hendrich, O., Knipper, M., Expression of prestin-homologous solute carrier (SLC26) in auditory organs of nonmammalian vertebrates and insects (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 7690-7695
  • Weisstaub, N., Vetter, D., Elgoyhen, A., Katz, E., The alpha9/alpha10 nicotinic acetylcholine receptor is permeable to and is modulated by divalent cations (2002) Hear. Res., 167, pp. 122-135
  • Yang, Z., PAML: a program package for phylogenetic analysis by maximum likelihood (1997) Comput. Appl. Biosci., 13, pp. 555-556
  • Yang, Z., Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution (1998) Mol. Biol. Evol., 15, pp. 568-573
  • Yang, Z., Nielsen, R., Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages (2002) Mol. Biol. Evol., 19, pp. 908-917
  • Yang, Z., Swanson, W.J., Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes (2002) Mol. Biol. Evol., 19, pp. 49-57
  • Yang, Z., Nielsen, R., Goldman, N., Pedersen, A.M., Codon-substitution models for heterogeneous selection pressure at amino acid sites (2000) Genetics, 155, pp. 431-449
  • Yoshida, N., Shigemoto, T., Sugai, T., Ohmori, H., The role of inositol triphosphate on ACh-induced outward currents in bullfrog saccular hair cells (1994) Brain Res., 644, pp. 90-100
  • Young, J.M., Trask, B.J., The sense of smell: genomics of vertebrate odorant receptors (2002) Hum. Mol. Genet., 11, pp. 1153-1160
  • Zheng, J., Shen, W., He, D.Z., Long, K.B., Madison, L.D., Dallos, P., Prestin is the motor protein of cochlear outer hair cells (2000) Nature, 405, pp. 149-155
  • Zheng, J., Long, K.B., Shen, W., Madison, L.D., Dallos, P., Prestin topology: localization of protein epitopes in relation to the plasma membrane (2001) Neuroreport, 12, pp. 1929-1935
  • Zheng, J., Du, G.G., Matsuda, K., Orem, A., Aguinaga, S., Deak, L., Navarrete, E., Dallos, P., The C-terminus of prestin influences nonlinear capacitance and plasma membrane targeting (2005) J. Cell Sci., 118, pp. 2987-2996
  • Zheng, J., Du, G.G., Anderson, C.T., Keller, J.P., Orem, A., Dallos, P., Cheatham, M., Analysis of the oligomeric structure of the motor protein prestin (2006) J. Biol. Chem., 281, pp. 19916-19924

Citas:

---------- APA ----------
Elgoyhen, A.B. & Franchini, L.F. (2011) . Prestin and the cholinergic receptor of hair cells: Positively-selected proteins in mammals. Hearing Research, 273(1-2), 100-108.
http://dx.doi.org/10.1016/j.heares.2009.12.028
---------- CHICAGO ----------
Elgoyhen, A.B., Franchini, L.F. "Prestin and the cholinergic receptor of hair cells: Positively-selected proteins in mammals" . Hearing Research 273, no. 1-2 (2011) : 100-108.
http://dx.doi.org/10.1016/j.heares.2009.12.028
---------- MLA ----------
Elgoyhen, A.B., Franchini, L.F. "Prestin and the cholinergic receptor of hair cells: Positively-selected proteins in mammals" . Hearing Research, vol. 273, no. 1-2, 2011, pp. 100-108.
http://dx.doi.org/10.1016/j.heares.2009.12.028
---------- VANCOUVER ----------
Elgoyhen, A.B., Franchini, L.F. Prestin and the cholinergic receptor of hair cells: Positively-selected proteins in mammals. Hear. Res. 2011;273(1-2):100-108.
http://dx.doi.org/10.1016/j.heares.2009.12.028