Artículo

Barmak, D.H.; Dorso, C.O.; Otero, M. "Modelling dengue epidemic spreading with human mobility" (2016) Physica A: Statistical Mechanics and its Applications. 447:129-140
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We explored the effect of human mobility on the spatio-temporal dynamics of Dengue with a stochastic model that takes into account the epidemiological dynamics of the infected mosquitoes and humans, with different mobility patterns of the human population. We observed that human mobility strongly affects the spread of infection by increasing the final size and by changing the morphology of the epidemic outbreaks. When the spreading of the disease is driven only by mosquito dispersal (flight), a main central focus expands diffusively. On the contrary, when human mobility is taken into account, multiple foci appear throughout the evolution of the outbreaks. These secondary foci generated throughout the outbreaks could be of little importance according to their mass or size compared with the largest main focus. However, the coalescence of these foci with the main one generates an effect, through which the latter develops a size greater than the one obtained in the case driven only by mosquito dispersal. This increase in growth rate due to human mobility and the coalescence of the foci are particularly relevant in temperate cities such as the city of Buenos Aires, since they give more possibilities to the outbreak to grow before the arrival of the low-temperature season. The findings of this work indicate that human mobility could be the main driving force in the dynamics of vector epidemics. © 2015 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Modelling dengue epidemic spreading with human mobility
Autor:Barmak, D.H.; Dorso, C.O.; Otero, M.
Filiación:Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, 1428, Argentina
IFIBA, CONICET, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:Foci coalescence; Human mobility; Stochastic modelling; Vector-borne diseases; Dynamics; Epidemiology; Stochastic systems; Temperature; Driving forces; Epidemic spreading; Human mobility; Human population; Low temperatures; Mobility pattern; Spatio-temporal dynamics; Vector-borne disease; Stochastic models
Año:2016
Volumen:447
Página de inicio:129
Página de fin:140
DOI: http://dx.doi.org/10.1016/j.physa.2015.12.015
Título revista:Physica A: Statistical Mechanics and its Applications
Título revista abreviado:Phys A Stat Mech Appl
ISSN:03784371
CODEN:PHYAD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v447_n_p129_Barmak

Referencias:

  • Gubler, D.J., Dengue and dengue hemorrhagic fever (1998) Clin. Microbiol. Rev., 11, pp. 480-496
  • Newton, E.A.C., Reiter, P., A model of the transmission of dengue fever with an evaluation of the impact of ultra-low volume (ULV) insecticide applications on dengue epidemics (1992) Am. J. Trop. Med. Hyg., 47, pp. 709-720
  • Esteva, L., Vargas, C., Analysis of a dengue disease transmission model (1998) Math. Biosci., 150, pp. 131-151
  • Esteva, L., Vargas, C., A model for dengue disease with variable human population (1999) J. Math. Biol., 38, pp. 220-240
  • Esteva, L., Vargas, C., Influence of vertical and mechanical transmission on the dynamics of dengue disease (2000) Math. Biosci., 167, pp. 51-64
  • Bartley, L.M., Donnelly, C.A., Garnett, G.P., The seasonal pattern of dengue in endemic areas: Mathematical models of mechanisms (2002) Trans. R. Soc. Trop. Med. Hyg., 96, pp. 387-397
  • Pongsumpun, P., Tang, I.M., Transmission of dengue hemorrhagic fever in an age structured population (2003) Math. Comput. Modelling, 37, pp. 949-961
  • Chowell, G., Diaz-Dueñas, P., Miller, J., Alcazar-Velazco, A., Hyman, J., Fenimore, P., Castillo-Chavez, C., Estimation of the reproduction number of dengue fever from spatial epidemic (2007) Math. Biosci., 208, pp. 571-589
  • Favier, C., Schmit, D., Müller-Graf, C.D.M., Cazelles, B., Degallier, N., Mondet, B., Dubois, M.A., Influence of spatial heterogeneity on an emerging infectious disease: The case of dengue epidemics (2005) Proc. R. Soc. Lond. Biol. Sci., 272 (1568), pp. 1171-1177
  • Focks, D.A., Haile, D.C., Daniels, E., Moun, G.A., Dynamics life table model for Aedes aegypti: Analysis of the literature and model development (1993) J. Med. Entomol., 30, pp. 1003-1018
  • Focks, D.A., Haile, D.C., Daniels, E., Mount, G.A., Dynamic life table model for Aedes aegypti: Simulations results (1993) J. Med. Entomol., 30, pp. 1019-1029
  • Focks, D.A., Haile, D.C., Daniels, E., Keesling, D., A simulation model of the epidemiology of urban dengue fever: Literature analysis, model development, preliminary validation and samples of simulation results (1995) Am. J. Trop. Med. Hyg., 53, pp. 489-505
  • Otero, M., Solari, H.G., Mathematical model of dengue disease transmission by Aedes aegypti mosquito (2010) Math. Biosci., 223, pp. 32-46
  • Otero, M., Solari, H.G., Schweigmann, N., A stochastic population dynamic model for Aedes Aegypti: Formulation and application to a city with temperate climate (2006) Bull. Math. Biol., 68, pp. 1945-1974
  • Otero, M., Schweigmann, N., Solari, H.G., A stochastic spatial dynamical model for Aedes aegypti (2008) Bull. Math. Biol., 70, pp. 1297-1325
  • Otero, M., Barmak, D.H., Dorso, C.O., Solari, H.G., Natiello, M.A., Modeling dengue outbreaks (2011) Math. Biosci., 232 (2), pp. 87-95
  • Barmak, D.H., Dorso, C.O., Otero, M., Solari, H.G., Dengue epidemics and human mobility (2011) Phys. Rev. E, 84 E
  • Liebman, K.A., Stoddard, S.T., Morrison, A.C., Rocha, C., Minnick, S., Sihuincha, M., Russell, K.L., Scott, T.W., Spatial dimensions of dengue virus transmission across interepidemic and epidemic periods in iquitos, Peru (1999-2003) (2012) PLoS Negl. Trop. Dis., 6 (2), p. e1472
  • Vazquez-Prokopec, G.M., Kitron, U., Montgomery, B., Horne, P., Ritchie, S.A., Quantifying the spatial dimension of dengue virus epidemic spread within a tropical urban environment (2010) PLoS Negl. Trop. Dis., 4 (12), p. e920
  • Morrison, A.C., Getis, A., Santiago, M., Rigau-Perez, J., Reiter, P., Exploratory space-time analysis of reported dengue cases during an outbreak in Florida, puerto rico, 1991-1992 (1998) Am. J. Trop. Med. Hyg., 58 (3), pp. 287-298
  • Rotela, C., Fouque, F., Lamfri, M., Sabatier, P., Introini, V., Zaidenberg, M., Scavuzzo, C., Space-time analysis of the dengue spreading dynamics in the 2004 Tartagal outbreak, northern Argentina (2007) Acta Trop., 103, pp. 1-13
  • Rhee, I., Shin, M., Hong, S., Lee, K., Chong, S., (2007) On the Levy-walk Nature of Human Mobility: Do Humans Walk Like Monkeys?, Tech. Rep., , Computer Science Department, North Carolina State University
  • Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L., Understanding individual human mobility patterns (2008) Nature, 453, pp. 779-782
  • Brockmann, D., Hufnagel, L., Geisel, T., The scaling laws of human travel (2006) Nature, 439, pp. 462-465
  • Brockmann, L.H.D., (2007) The Scaling Law of Human Travel - A Message from George, , World Scientific
  • Chowell, G., Hyman, J.M., Eubank, S., Castillo-Chavez, C., Scaling laws for the movement of people between locations in a large city (2003) Phys. Rev. E, 68 (6), pp. 661021-661027
  • Cattuto, C., Van Den Broeck, W., Barrat, A., Colizza, V., Pinton, J.-F., Vespignani, A., Dynamics of person-to-person interactions from distributed RFID sensor networks (2010) PLoS One, 5, p. e11596. , http://dx.doi.org/10.1371%2Fjournal.pone.0011596
  • Candia, J., Gonzalez, M.C., Wang, P., Schoenharl, T., Madey, G., Laszlo Barabasi, A., Uncovering individual and collective human dynamics from mobile phone records (2008) J. Phys. A, 41 (22)
  • Wang, P., Gonzalez, M.C., Understanding spatial connectivity of individuals with non-uniform population density (2009) Philos. Trans. R. Soc. Lond. Ser. A, 367, pp. 3321-3329
  • Epstein, J.M., Parker, J., Cummings, D., Hammond, R.A., Coupled contagion dynamics of fear and disease: Mathematical and computational explorations (2008) PLoS One, 3, p. e3955. , http://dx.doi.org/10.1371%2Fjournal.pone.0003955
  • Zanette, D.H., Gusman, S.R., Infection spreading in a population with evolving contacts (2007) J. Biol. Phys., 34, pp. 135-148
  • Lig, W., Jia-Ren, Y., Jian-Guo, Z., Zi-Ran, L., Controlling disease spread on networks with feedback mechanism (2007) Chin. Phys., 16 (9), pp. 2498 and
  • Fefferman, N.H., Ng, K.L., How disease models in static networks can fail to approximate disease in dynamic networks (2007) Phys. Rev. E, 76 (3), pp. 031919 and
  • Funk, S., Salathé, M., Jansen, V.A.A., Modelling the influence of human behaviour on the spread of infectious diseases: A review (2010) J. R. Soc. Interface, 7 (50), pp. 1247-1256
  • Zhao, Z., Calderón, J.P., Xu, C., Zao, G., Fenn, D., Sornette, D., Crane, R., Johnson, N.F., Effect of social group dynamics on contagion (2010) Phys. Rev. E, 81 (5), pp. 056107 and
  • Buscarino, A., Fortuna, L., Frasca, M., Latora, V., Disease spreading in populations of moving agents (2008) Eur. Phys. Lett., 82 (3), p. 38002
  • Li, X., Cao, L., Cao, G.F., Epidemic prevalence on random mobile dynamical networks: Individual heterogeneity and correlation (2010) Eur. Phys. J. B, 75, pp. 319-326
  • Keeling, M., Eames, K.T., Networks and epidemic models (2005) J. R. Soc. Interface, 2 (4), pp. 295-307
  • Risau-Gusmans, S., Zanette, D.H., Contact switching as a control strategy for epidemic outbreaks (2009) J. Theoret. Biol., 257 (1), pp. 52-60
  • Gross, T., D'Lima, C.J., Blasius, B., Epidemic dynamics on an adaptive network (2006) Phys. Rev. Lett., 96 (20), pp. 208701 and
  • Pongsumpun, P., Lopez, D.G., Favier, C., Torres, L., Llosa, J., Dubois, M., Dynamics of dengue epidemics in urban contexts (2008) Trop. Med. Int. Health, 13, pp. 1180-1187
  • Stoddard, S.T., Morrison, A.C., Vazquez-Prokopec, G.M., Soldan, V.P., Kochel, T.J., Kitron, U., Elder, J.P., Scott, T.W., The role of human movement in the transmission of vector-borne pathogens (2009) PLoS Negl. Trop. Dis., 3 (7), p. e481
  • Sattenspiel, L., (2009) The Geographic Spread of Infectious Diseases: Models and Applications, , Princeton University
  • Barthélemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A., Dynamical patterns of epidemic outbreaks in complex heterogeneous networks (2005) J. Theoret. Biol., 235, pp. 275-288

Citas:

---------- APA ----------
Barmak, D.H., Dorso, C.O. & Otero, M. (2016) . Modelling dengue epidemic spreading with human mobility. Physica A: Statistical Mechanics and its Applications, 447, 129-140.
http://dx.doi.org/10.1016/j.physa.2015.12.015
---------- CHICAGO ----------
Barmak, D.H., Dorso, C.O., Otero, M. "Modelling dengue epidemic spreading with human mobility" . Physica A: Statistical Mechanics and its Applications 447 (2016) : 129-140.
http://dx.doi.org/10.1016/j.physa.2015.12.015
---------- MLA ----------
Barmak, D.H., Dorso, C.O., Otero, M. "Modelling dengue epidemic spreading with human mobility" . Physica A: Statistical Mechanics and its Applications, vol. 447, 2016, pp. 129-140.
http://dx.doi.org/10.1016/j.physa.2015.12.015
---------- VANCOUVER ----------
Barmak, D.H., Dorso, C.O., Otero, M. Modelling dengue epidemic spreading with human mobility. Phys A Stat Mech Appl. 2016;447:129-140.
http://dx.doi.org/10.1016/j.physa.2015.12.015