Artículo

El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In a previous paper we have given a general framework for addressing the definition of quantum chaos by identifying the conditions that a quantum system must satisfy to lead to non-integrability in its classical limit. In this paper we will generalize those results, with the purpose of defining the two lower levels of the quantum ergodic hierarchy: ergodicity and mixing. We will also argue for the physical relevance of this approach by considering a particular example where our formalism has been successfully applied. © 2008 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Towards a definition of the quantum ergodic hierarchy: Ergodicity and mixing
Autor:Castagnino, M.; Lombardi, O.
Filiación:CONICET, Universidad de Buenos Aires, Argentina
Instituto de Astronomía y Física del Espacio (IAFE), Argentina
Instituto de Física de Rosario (IFIR), Argentina
Palabras clave:Decoherence; Quantum chaos; Quantum ergodicity; Quantum mixing; Quantum electronics; Quantum optics; Classical limits; Decoherence; Ergodic; Ergodicity; General frameworks; Integrability; Quantum chaos; Quantum ergodicity; Quantum mixing; Quantum systems; Quantum theory
Año:2009
Volumen:388
Número:4
Página de inicio:247
Página de fin:267
DOI: http://dx.doi.org/10.1016/j.physa.2008.10.019
Título revista:Physica A: Statistical Mechanics and its Applications
Título revista abreviado:Phys A Stat Mech Appl
ISSN:03784371
CODEN:PHYAD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v388_n4_p247_Castagnino

Referencias:

  • Ford, J., Mantica, G., Ristow, G.H., The Arnol'd cat: Failure of the correspondence principle (1991) Physica D, 50, pp. 493-520
  • Ford, J., Mantica, G., Does quantum mechanics obey the correspondence principle? Is it complete? (1992) Amer. J. Phys., 60, pp. 1086-1098
  • Schuster, H.G., (1984) Deterministic Chaos, , VCH, Weinheim
  • Batterman, R.W., Chaos, quantization and the correspondence principle (1991) Synthese, 89, pp. 189-227
  • Berry, M.V., Quantum chaology, not quantum chaos (1989) Phys. Scr., 40, pp. 335-336
  • Berry, M.V., Some quantum-to-classical asymptotics (1991) Chaos and Quantum Physics, , Giannoni M.J., Voros A., and Zinn-Justin J. (Eds), North Holland, Amsterdam
  • Weinberg, S., Testing quantum mechanics (1989) Ann. Phys., 194, pp. 336-386
  • Ghirardi, G.C., Rimini, A., Weber, T., Unified dynamics for microscopic and macroscopic systems (1986) Phys. Rev. D, 34, pp. 470-491
  • Zurek, W.H., Paz, J.P., Decoherence, chaos and the second law (1994) Phys. Rev. Lett., 72, pp. 2508-2511
  • Paz, J.P., Zurek, W.H., Environment-induced decoherence and the transition from quantum to classical (2002) Lecture Notes in Physics, 587. , Heiss D. (Ed), Springer, Heidelberg, Berlin
  • Zurek, W.H., Decoherence, einselection, and the quantum origins of the classical (2003) Rev. Modern Phys., 75, pp. 715-776
  • Nakamura, K., (1993) Quantum Chaos, , Cambridge University Press, Cambridge
  • Stockmann, H.J., (2000) Quantum Chaos, , Cambridge University Press, Cambridge
  • Castagnino, M., Laura, R., Functional approach to quantum decoherence and the classical limit (2000) Phys. Rev. A, 62, p. 022107
  • Castagnino, M., Laura, R., Functional approach to quantum decoherence and the classical limit: The Mott and cosmological problems (2000) Internat. J. Theoret. Phys., 39, pp. 1737-1765
  • Castagnino, M., Gadella, M., Id Betan, R., Laura, R., The Gamow functional (2001) Phys. Lett. A, 282, pp. 245-250
  • Castagnino, M., Gadella, M., Laura, R., Id Betan, R., Gamow functionals on operators algebras (2001) J. Phys. A, 34, pp. 10067-10083
  • Castagnino, M., Lombardi, O., The self-induced approach to decoherence in cosmology (2003) Internat. J. Theoret. Phys., 42, pp. 1281-1299
  • Castagnino, M., Ordoñez, A., The algebraic formulation of quantum decoherence (2004) Internat. J. Theoret. Phys., 43, pp. 695-717
  • Castagnino, M., Lombardi, O., Self-induced decoherence: A new approach (2004) Stud. Hist. Philos. Mod. Phys., 35, pp. 73-104
  • Castagnino, M., The classical-statistical limit of quantum mechanics (2004) Physica A, 335, pp. 511-517
  • Castagnino, M., Lombardi, O., Decoherence time in self-induced decoherence (2005) Phys. Rev. A, 72, p. 012102
  • Castagnino, M., Gadella, M., The problem of the classical limit of quantum mechanics and the role of self-induced decoherence (2006) Found. Phys., 36, pp. 920-952
  • Castagnino, M., Lombardi, O., Self-induced decoherence and the classical limit of quantum mechanics (2005) Philos. Sci., 72, pp. 764-776
  • Castagnino, M., Lombardi, O., The classical limit of non-integrable quantum systems, a route to chaos (2006) Chaos Solitons Fractals, 28, pp. 879-898
  • Castagnino, M., Lombardi, O., Non-integrability and mixing in quantum systems: On the way to quantum chaos (2007) Stud. Hist. Philos. Mod. Phys., 38, pp. 482-513
  • Belot, G., Earman, J., Chaos out of order: Quantum mechanics, the correspondence principle, and chaos (1997) Stud. Hist. Philos. Mod. Phys., 28, pp. 147-182
  • Emch, G., (1984) Mathematical and Conceptual Foundations of 20-th Century Physics, , North Holland, Amsterdam
  • Haag, R., (1993) Local Quantum Physics (Fields, Particles, Algebras), , Springer Verlag, Berlin
  • Iguri, S., Castagnino, M., The formulation of quantum mechanics in terms of nuclear algebras (1999) Internat. J. Theoret. Phys., 38, pp. 143-164
  • Iguri, S., Castagnino, M., Some remarks on the Gelfand-Naimark-Segal representation of topological algebras (2008) J. Math. Phys., 49, p. 033510
  • van Hove, L., Energy corrections and persistent perturbations effect in continuous spectra (1955) Physica, 21, pp. 901-923. , Energy corrections and persistent perturbations effect in continuous spectra II, Physica, 22 (1956) 343-354
  • Antoniou, I., Suchanecki, Z., Quantum systems with diagonal singularity (1997) Adv. Chem. Phys., 99, pp. 299-332
  • Antoniou, I., Suchanecki, Z., Laura, R., Tasaki, S., Intrinsic irreversibility of quantum systems with diagonal singularity (1997) Physica A, 241, pp. 737-772
  • Mackey, M., The dynamic origin of increasing entropy (1989) Rev. Modern Phys., 61, pp. 981-1015
  • Hillery, M., O'Connell, R.F., Scully, M.O., Wigner, E.P., Distribution functions in physics, fundamentals (1984) Phys. Rep., 106, pp. 121-167
  • Gadella, M., Moyal formulation of quantum mechanics (1995) Fortschr. Phys., 43, pp. 229-264
  • G. Dito, D. Sternheimer, Deformation quantization: Genesis, development and metamorphoses. Available from: arXivmath.QA/0201168, 2002; Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., Sternheimer, D., Deformation theory and quantization II. Physical applications (1978) Ann. Phys., 110, pp. 111-151
  • Abraham, R., Mardsden, J.E., (1967) Foundations of Mechanics, , Benjamin, New York
  • Benatti, F., (1993) Deterministic Chaos in Infinite Quantum Systems, , Springer Verlag, Berlin
  • Castagnino, M., Fortin, S., Laura, R., Lombardi, O., A general theoretical framework for decoherence in open and closed systems (2008) Classical Quantum Gravity, 25, p. 154002
  • Gaioli, F., García-Álvarez, E., Guevara, J., Quantum Brownian motion (1997) Internat. J. Theoret. Phys., 36, pp. 2167-2207
  • Lasota, A., Mackey, M.C., (1985) Probabilistic Properties of Deterministic Systems, , Cambridge University Press, Cambridge
  • Bratteli, O., Robinson, D.W., (1997) Operator Algebras and Quantum Statistical Mechanics, 2. , Springer-Verlag, Berlin
  • Halmos, P., (1956) Lectures on Ergodic Theory, , Chelsea Publishing, New York
  • Gaspard, P., (1998) Chaos, Scattering, and Statistical Mechanics, , Cambridge University Press, Cambridge
  • Casati, G., Prosen, T., Quantum chaos and the double-slit experiment (2005) Phys. Rev. A, 72, p. 032111
  • Castagnino, M., The equilibrium limit of the Casati-Prosen model (2006) Phys. Lett. A, 357, pp. 97-100

Citas:

---------- APA ----------
Castagnino, M. & Lombardi, O. (2009) . Towards a definition of the quantum ergodic hierarchy: Ergodicity and mixing. Physica A: Statistical Mechanics and its Applications, 388(4), 247-267.
http://dx.doi.org/10.1016/j.physa.2008.10.019
---------- CHICAGO ----------
Castagnino, M., Lombardi, O. "Towards a definition of the quantum ergodic hierarchy: Ergodicity and mixing" . Physica A: Statistical Mechanics and its Applications 388, no. 4 (2009) : 247-267.
http://dx.doi.org/10.1016/j.physa.2008.10.019
---------- MLA ----------
Castagnino, M., Lombardi, O. "Towards a definition of the quantum ergodic hierarchy: Ergodicity and mixing" . Physica A: Statistical Mechanics and its Applications, vol. 388, no. 4, 2009, pp. 247-267.
http://dx.doi.org/10.1016/j.physa.2008.10.019
---------- VANCOUVER ----------
Castagnino, M., Lombardi, O. Towards a definition of the quantum ergodic hierarchy: Ergodicity and mixing. Phys A Stat Mech Appl. 2009;388(4):247-267.
http://dx.doi.org/10.1016/j.physa.2008.10.019