Artículo

Pérez, D.G.; Zunino, L.; Garavaglia, M.; Rosso, O.A. "Wavelet entropy and fractional Brownian motion time series" (2006) Physica A: Statistical Mechanics and its Applications. 365(2):282-288
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We study the functional link between the Hurst parameter and the normalized total wavelet entropy when analyzing fractional Brownian motion (fBm) time series-these series are synthetically generated. Both quantifiers are mainly used to identify fractional Brownian motion processes [L. Zunino, D.G. Pérez, M. Garavaglia, O.A. Rosso, Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform, Fractals 12(2) (2004) 223-233]. The aim of this work is to understand the differences in the information obtained from them, if any. © 2005 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Wavelet entropy and fractional Brownian motion time series
Autor:Pérez, D.G.; Zunino, L.; Garavaglia, M.; Rosso, O.A.
Filiación:Instituto de Física, Pontificia Universidad Católica de Valparaíso (PUCV), 23-40025 Valparaíso, Chile
Centro de Investigaciones Ópticas (CIOp), CC. 124 Correo Central, 1900 La Plata, Argentina
Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 1900 La Plata, Argentina
Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Pabellon II, Ciudad Universitaria, 1428 Ciudad de Buenos Aires, Argentina
Palabras clave:Fractional Brownian motion; Hurst parameter; Mean normalized total wavelet entropy; Wavelet theory; Entropy; Laser applications; Statistical mechanics; Turbulent flow; Wavelet transforms; Fractional Brownian motion; Hurst parameter; Mean normalized total wavelet entropy; Wavelet theory; Brownian movement
Año:2006
Volumen:365
Número:2
Página de inicio:282
Página de fin:288
DOI: http://dx.doi.org/10.1016/j.physa.2005.09.060
Título revista:Physica A: Statistical Mechanics and its Applications
Título revista abreviado:Phys A Stat Mech Appl
ISSN:03784371
CODEN:PHYAD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03784371_v365_n2_p282_Perez

Referencias:

  • Zunino, L., Pérez, D.G., Garavaglia, M., Rosso, O.A., Characterization of laser propagation through turbulent media by quantifiers based on the wavelet transform (2004) Fractals, 12 (2), pp. 223-233
  • Mandelbrot, B.B., Van Ness, J.W., Fractional Brownian motions, fractional noises and applications (1968) SIAM Rev., 4, pp. 422-437
  • Rosso, O.A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schürmann, M., Başar, E., Wavelet entropy: a new tool for analysis of short duration brain electrical signals (2001) J. Neurosci. Method, 105, pp. 65-75
  • Passoni, I., Rabal, H., Arizmendi, C.M., Characterizing dynamic speckle time series with the Hurst coefficient concept (2004) Fractals, 12 (3), pp. 319-329
  • Passoni, I., Dai Pra, A., Rabal, H., Trivi, M., Arizaga, R., Dynamic speckle processing using wavelets based entropy (2005) Opt. Commun., 246 (1-3), pp. 219-228
  • Samorodnitsky, G., Taqqu, M.S., (1994) Stable non-Gaussian random processes, Stochastic Modeling, , Chapman & Hall, London, UK
  • Pérez, D.G., Zunino, L., Garavaglia, M., Modeling the turbulent wave-front phase as a fractional Brownian motion: a new approach (2004) J. Opt. Soc. Am. A, 21 (10), pp. 1962-1969
  • Flandrin, P., Wavelet analysis and synthesis of fractional Brownian motion (1992) IEEE Trans. Inf. Theory, IT-38 (2), pp. 910-917
  • Masry, E., The wavelet transform of stochastic processes with stationary increments and its applications to fractional Brownian motion (1993) IEEE Trans. Inf. Theory, IT-39 (1), pp. 260-264
  • Unser, M., Spline: a perfect fit for signal and image processing (1999) IEEE Signal Process. Mag., 16, pp. 22-38
  • Thévenaz, P., Blu, T., Unser, M., Interpolation revisited (2000) IEEE Trans. Med. Imaging, 19 (7), pp. 739-758
  • Abry, P., Flandrin, P., Taqqu, M.S., Veitch, D., Wavelets for the analysis estimation and synthesis of scaling data (2000) Self-similar Network Traffic and Performance Evaluation, , Park K., and Willinger W. (Eds), Wiley, New York
  • Tukey, J.W., (1977) Exploratory Data Analysis, , Addison-Wesley, Reading, MA
  • Elliott, R.J., van der Hoek, J., A general fractional white noise theory and applications to finance (2003) Math. Finance, 13, pp. 301-330
  • Holden, H., Øksendal, B., Ubøe, J., Zhang, T., Stochastic partial differential equations: a modeling, white noise functional approach (1996) Probability and Its Applications, , Birkhäuser, Basel

Citas:

---------- APA ----------
Pérez, D.G., Zunino, L., Garavaglia, M. & Rosso, O.A. (2006) . Wavelet entropy and fractional Brownian motion time series. Physica A: Statistical Mechanics and its Applications, 365(2), 282-288.
http://dx.doi.org/10.1016/j.physa.2005.09.060
---------- CHICAGO ----------
Pérez, D.G., Zunino, L., Garavaglia, M., Rosso, O.A. "Wavelet entropy and fractional Brownian motion time series" . Physica A: Statistical Mechanics and its Applications 365, no. 2 (2006) : 282-288.
http://dx.doi.org/10.1016/j.physa.2005.09.060
---------- MLA ----------
Pérez, D.G., Zunino, L., Garavaglia, M., Rosso, O.A. "Wavelet entropy and fractional Brownian motion time series" . Physica A: Statistical Mechanics and its Applications, vol. 365, no. 2, 2006, pp. 282-288.
http://dx.doi.org/10.1016/j.physa.2005.09.060
---------- VANCOUVER ----------
Pérez, D.G., Zunino, L., Garavaglia, M., Rosso, O.A. Wavelet entropy and fractional Brownian motion time series. Phys A Stat Mech Appl. 2006;365(2):282-288.
http://dx.doi.org/10.1016/j.physa.2005.09.060