Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Cerium-manganese mixed oxides with different composition were prepared by co-precipitation, characterized and evaluated for the water-gas shift (WGS) reaction. Base metal (5 wt.% Cu and 5 wt.% Ni) catalysts supported on Ce-Mn mixed oxides were also tested for the WGS reaction. The activity of the bare supports is higher in the mixed samples than in pure ceria or manganese oxide. This result can be explained by a combination of greater reducibility and surface area in the mixed samples. Addition of base metals produces superior WGS catalysts. Particularly, nickel catalysts tested are able to reduce typical CO concentrations entering the WGS process to the CO levels tolerated by phosphoric acid fuel cells in a single unit operated at 400 C. © 2013 Elsevier B.V.

Registro:

Documento: Artículo
Título:Ce-Mn mixed oxides as supports of copper- and nickel-based catalysts for water-gas shift reaction
Autor:Poggio Fraccari, E.; D'Alessandro, O.; Sambeth, J.; Baronetti, G.; Mariño, F.
Filiación:Laboratorio de Procesos Catalíticos, Departamento de Ingeniería Química, Ciudad Universitaria, 1428 Buenos Aires, Argentina
CINDECA-CCT CONICET la Plata, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
Palabras clave:Cerium; Copper; Fuel cells; Manganese; Nickel; Water-gas shift reaction; CO concentrations; Mixed samples; Nickel catalyst; Nickel-based catalyst; Surface area; Water-gas shift reaction (WGS); Water-gas-shift reactions; WGS reactions; Catalysts; Cerium; Copper; Economic geology; Fuel cells; Manganese; Nickel; Phosphoric acid fuel cells (PAFC); Water gas shift
Año:2014
Volumen:119
Página de inicio:67
Página de fin:73
DOI: http://dx.doi.org/10.1016/j.fuproc.2013.10.012
Título revista:Fuel Processing Technology
Título revista abreviado:Fuel Process Technol
ISSN:03783820
CODEN:FPTED
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03783820_v119_n_p67_PoggioFraccari

Referencias:

  • Song, Ch., Fuel processing for low-temperature and high-temperature fuel cells. Challenges and opportunities for sustainable development in the 21st century (2002) Catalysis Today, 77, pp. 17-49
  • (2004) Fuel Cell Handbook, , 7th ed. US Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory Morgantown, WV
  • Ahmed, S., Krumpelt, M., Hydrogen from hydrocarbon fuels for fuel cells (2001) International Journal of Hydrogen Energy, 26, pp. 291-301
  • Ratnasamy, Ch., Wagner, J., Water gas shift catalysis (2009) Catalysis Reviews: Science and Engineering, 51, pp. 325-440
  • Bunluesin, T., Gorte, R.J., Graham, G.W., Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: Implications for oxygen-storage properties (1998) Applied Catalysis B: Environmental, 15 (1-2), pp. 107-114. , DOI 10.1016/S0926-3373(97)00040-4, PII S0926337397000404
  • Gorte, R.J., Zhao, S., Studies of the water-gas-shift reaction with ceria-supported precious metals (2005) Catalysis Today, 104, pp. 18-24
  • El-Moemen, A., Karpenko, A., Denkwitz, Y., Behm, R., Activity stability and deactivation of Au/CeO2 catalysts in the water gas shift reaction at increased reaction temperature (300 C) (2009) Journal of Power Sources, 190, pp. 64-75
  • Hwang, K.R., Park, J.S., Ihm, S.K., Si-modified Pt/CeO2 catalyst for a single-stage water-gas shift reaction (2011) International Journal of Hydrogen Energy, 36, pp. 9685-9693
  • Panagiotopoulou, P., Kondarides, D.I., A comparative study of the water-gas shift activity of Pt catalysts supported on single (MOx) and composite (MOx/Al 2O3, MOx/TiO2) metal oxide carriers (2007) Catalysis Today, 127 (1-4), pp. 319-329. , DOI 10.1016/j.cattod.2007.05.010, PII S0920586107003112
  • Gunawardana, P.V.D.S., Lee, H.C., Kim, D.H., Performance of copper-ceria catalysts for water gas shift reaction in medium temperature range (2009) International Journal of Hydrogen Energy, 34, pp. 1336-1341
  • Schumacher, N., Boisen, A., Dahl, S., Gokhale, A.A., Kandoi, S., Grabow, L.C., Dumesic, J.A., Chorkendorff, I., Trends in low-temperature water-gas shift reactivity on transition metals (2005) Journal of Catalysis, 229, pp. 265-275
  • Quiney, A.S., Schuurman, Y., Kinetic modelling of CO conversion over a Cu/ceria catalyst (2007) Chemical Engineering Science, 62 (18-20), pp. 5026-5032. , DOI 10.1016/j.ces.2007.02.030, PII S0009250907001959
  • Natesakhawat, S., Wang, X., Zhang, L., Ozkan, U.S., Development of chromium-free iron-based catalysts for high-temperature water-gas shift reaction (2006) Journal of Molecular Catalysis A: Chemical, 260 (1-2), pp. 82-94. , DOI 10.1016/j.molcata.2006.07.013, PII S1381116906010053
  • Tabakova, T., Idakiev, V., Papavasiliou, J., Avgouropoulos, G., Ioannides, T., Effect of additives on the WGS activity of combustion synthesized CuO/CeO2 catalysts (2007) Catalysis Communications, 8 (1), pp. 101-106. , DOI 10.1016/j.catcom.2006.05.032, PII S1566736706001725
  • Tanaka, Y., Utaka, T., Kikuchi, R., Takeguchi, T., Sasaki, K., Eguchi, K., Water gas shift reaction for the reformed fuels over Cu/MnO catalysts prepared via spinel-type oxide (2003) Journal of Catalysis, 215, pp. 271-278
  • Hapeshi, E., Theocharis, C.R., Preparation and characterization of nanoporous solids with composition CexMn1-xO2-y with x values 0 to 1 (2007) Studies in Surface Science and Catalysis, 160, pp. 645-650
  • Ribeiro, M., Jacobs, G., Graham, U.M., Azzam, K.G., Linganiso, L., Davis, B.H., Low temperature water-gas shift: Differences in oxidation states observed with partially reduced Pt/MnOX and Pt/CeOX catalysts yield differences in OH group reactivity (2010) Catalysis Communications, 11, pp. 193-199
  • Jiang, L., Ye, B., Wei, K., Effects of CeO2 on structure and properties of Ni-Mn-K/bauxite catalysts for water-gas shift reaction (2008) Journal of Rare Earths, 26, pp. 352-356
  • Du, X., Yuan, Z., Cao, L., Zhang, Ch., Wang, Sh., Water gas shift reaction over Cu-Mn mixed oxides catalysts: Effects of the third metal (2008) Fuel Processing Technology, 89, pp. 131-138
  • Guo, Q., Liu, Y., MnOx modified Co3O4-CeO2 catalysts for the preferential oxidation of CO in H2-rich gases (2008) Applied Catalysis B: Environmental, 82, pp. 19-26
  • Inamura, S., Dol, A., Ishida, S., (1985) Industrial and Engineering Chemistry Product Research and Development, 24, pp. 75-80
  • Chen, H., Sayari, A., Adnot, A., Larachi, F., Composition-activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation (2001) Applied Catalysis B: Environmental, 32, pp. 195-204
  • D'Alessandro, O., (2012) Study of Phenol Adsorption-Oxidation Mechanism on the Catalytic System Mn-Ce-O, , (PhD Thesis) University of La Plata Argentina
  • Giordano, F., Trovarelli, A., De Leitenburg, C., Giona, M., A model for the temperature-programmed reduction of low and high surface area ceria (2000) Journal of Catalysis, 193, pp. 273-282
  • Poggio, E., Jobbagy, M., Moreno, M., Laborde, M., Mariño, F., Baronetti, G.T., Influence of the calcination temperature on the structure and reducibility of nanoceria obtained from crystalline Ce(OH)CO3 precursor (2011) International Journal of Hydrogen Energy, 36, pp. 15899-15905
  • Hamoudi, S., Sayari, A., Belkacemi, K., Bonneviot, L., Larachi, F., Catalytic wet oxidation of phenol over PtxAg 1-xMnO2/CeO2 catalysts (2000) Catalysis Today, 62 (4), pp. 379-388. , DOI 10.1016/S0920-5861(00)00439-9
  • Carno, J., Ferrandon, M., Bjornbom, E., Jaras, S., Mixed manganese oxide/platinum catalysts for total oxidation of model gas from wood boilers (1997) Applied Catalysis A: General, 155 (2), pp. 265-281. , PII S0926860X96003961
  • Hussain, S.T., Sayari, A., Larachi, F., Enhancing the stability of Mn-Ce-O WETOX catalysts using potassium (2001) Applied Catalysis B: Environmental, 34, pp. 1-9
  • Craciun, R., Nentwick, B., Hadjiivanov, K., Knözinger, H., Structure and redox properties of MnOx/Yttrium-stabilized zirconia (YSZ) catalyst and its used in CO and CH4 oxidation (2003) Applied Catalysis A: General, 243, pp. 67-79
  • Morales, M.R., Barbero, B.P., Cadus, L.E., Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts (2006) Applied Catalysis B: Environmental, 67 (3-4), pp. 229-236. , DOI 10.1016/j.apcatb.2006.05.006, PII S0926337306001895
  • Ferrandon, M., Carno, J., Jaras, S., Bjornbom, E., Total oxidation catalysts based on manganese or copper oxides and platinum or palladium I: Characterisation (1999) Applied Catalysis A: General, 180 (1-2), pp. 141-151. , PII S0926860X98003263
  • Stobbe, E.R., De Boer, B.A., Geus, J.W., The reduction and oxidation behaviour of manganese oxides (1999) Catalysis Today, 47 (1-4), pp. 161-167. , PII S092058619800296X
  • Li, Y., Fu, Q., Flytzani-Stephanopoulos, M., Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts (2000) Applied Catalysis B: Environmental, 27 (3), pp. 179-191. , DOI 10.1016/S0926-3373(00)00147-8, PII S0926337300001478
  • Mariño, F., Descorme, C., Duprez, D., Supported base metal catalysts for the preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX) (2005) Applied Catalysis B: Environmental, 58, pp. 175-183
  • Lin, J.H., Biswas, P., Guliant, V.V., Misture, S., Hydrogen production by water-gas shift reaction over bimetallic Cu-Ni catalysts supported on La-doped mesoporous ceria (2010) Applied Catalysis A: General, 387, pp. 87-94
  • Jacobs, G., Chenu, E., Patterson, P., Williams, L., Sparks, D., Thomas, G., Davis, B., Water-gas shift: Comparative screening of metal promoters for metal/ceria systems and role of the metal (2004) Applied Catalysis A: General, 258, pp. 203-214
  • Takenaka, S., Shimizu, T., Otsuka, K., Complete removal of carbon monoxide in hydrogen-rich gas stream through methanation over supported metal catalysts (2004) International Journal of Hydrogen Energy, 29, pp. 1065-1073
  • Kramer, M., Duisberg, M., Stowe, K., Maier, W.F., Highly selective CO methanation catalysts for the purification of hydrogen-rich gas mixtures (2007) Journal of Catalysis, 251 (2), pp. 410-422. , DOI 10.1016/j.jcat.2007.07.030, PII S0021951707003065
  • Wang, L., Zhang, Sh., Liu, Y., Reverse water gas shift reaction over co-precipitated Ni-CeO2 catalysts (2008) Journal of Rare Earths, 26, pp. 66-70
  • Zyryanova, M.M., Snytnikov, P.V., Amosov, Yu.I., Kuzmin, V.A., Kirillov, V.A., Sobyanin, V.A., Design, scale-out, and operation of a preferential CO methanation reactor with a nickel-ceria catalyst (2011) Chemical Engineering Journal, 176-177, pp. 106-113

Citas:

---------- APA ----------
Poggio Fraccari, E., D'Alessandro, O., Sambeth, J., Baronetti, G. & Mariño, F. (2014) . Ce-Mn mixed oxides as supports of copper- and nickel-based catalysts for water-gas shift reaction. Fuel Processing Technology, 119, 67-73.
http://dx.doi.org/10.1016/j.fuproc.2013.10.012
---------- CHICAGO ----------
Poggio Fraccari, E., D'Alessandro, O., Sambeth, J., Baronetti, G., Mariño, F. "Ce-Mn mixed oxides as supports of copper- and nickel-based catalysts for water-gas shift reaction" . Fuel Processing Technology 119 (2014) : 67-73.
http://dx.doi.org/10.1016/j.fuproc.2013.10.012
---------- MLA ----------
Poggio Fraccari, E., D'Alessandro, O., Sambeth, J., Baronetti, G., Mariño, F. "Ce-Mn mixed oxides as supports of copper- and nickel-based catalysts for water-gas shift reaction" . Fuel Processing Technology, vol. 119, 2014, pp. 67-73.
http://dx.doi.org/10.1016/j.fuproc.2013.10.012
---------- VANCOUVER ----------
Poggio Fraccari, E., D'Alessandro, O., Sambeth, J., Baronetti, G., Mariño, F. Ce-Mn mixed oxides as supports of copper- and nickel-based catalysts for water-gas shift reaction. Fuel Process Technol. 2014;119:67-73.
http://dx.doi.org/10.1016/j.fuproc.2013.10.012