Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The Asr gene family is widespread in higher plants. Most Asr genes are up-regulated under different environmental stress conditions and during fruit ripening. ASR proteins are localized in the nucleus and their likely function is transcriptional regulation. In cultivated tomato, we identified a novel fourth family member, named Asr4, which maps close to its sibling genes Asr1-Asr2-Asr3 and displays an unshared region coding for a domain containing a 13-amino acid repeat. In this work we were able to expand our previous analysis for Asr2 and investigated the coding regions of the four known Asr paralogous genes in seven tomato species from different geographic locations. In addition, we performed a phylogenetic analysis on ASR proteins. The first conclusion drawn from this work is that tomato ASR proteins cluster together in the tree. This observation can be explained by a scenario of concerted evolution or birth and death of genes. Secondly, our study showed that Asr1 is highly conserved at both replacement and synonymous sites within the genus Lycopersicon. ASR1 protein sequence conservation might be associated with its multiple functions in different tissues while the low rate of synonymous substitutions suggests that silent variation in Asr1 is selectively constrained, which is probably related to its high expression levels. Finally, we found that Asr1 activation under water stress is not conserved between Lycopersicon species. © 2006 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Evolutionary history of the Asr gene family
Autor:Frankel, N.; Carrari, F.; Hasson, E.; Iusem, N.D.
Filiación:Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Instituto de Biotecnología, CICVyA, INTA, Castelar, Buenos Aires, Argentina
Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
Palabras clave:Codon usage; Expression pattern; Gene conversion; Lycopersicon; Water stress; amino acid substitution; article; codon usage; fruit ripening; gene activation; gene function; gene identification; gene sequence; genetic conservation; genetic variability; molecular evolution; multigene family; nucleotide sequence; paralogy; plant stress; priority journal; protein domain; protein function; protein localization; tomato; transcription regulation; upregulation; water stress; Amino Acid Sequence; Base Sequence; Codon; DNA, Plant; Evolution, Molecular; Gene Expression; Genes, Plant; Lycopersicon esculentum; Molecular Sequence Data; Multigene Family; Oryza sativa; Phylogeny; Plant Proteins; Plants; Sequence Homology, Amino Acid; Solanaceae; Embryophyta; Lycopersicon; Lycopersicon esculentum
Año:2006
Volumen:378
Número:1-2
Página de inicio:74
Página de fin:83
DOI: http://dx.doi.org/10.1016/j.gene.2006.05.010
Título revista:Gene
Título revista abreviado:Gene
ISSN:03781119
CODEN:GENED
CAS:Asr1 protein, Lycopersicon esculentum; Asr2 protein, Lycopersicon esculentum; Codon; DNA, Plant; Plant Proteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03781119_v378_n1-2_p74_Frankel

Referencias:

  • Akashi, H., Gene expression and molecular evolution (2001) Curr. Opin. Genet. Dev., 11, pp. 660-666
  • Akashi, H., Eyre-Walker, A., Translational selection and molecular evolution (1998) Curr. Opin. Genet. Dev., 8, pp. 688-693
  • Alba, R., Kelmenson, P.M., Cordonnier-Pratt, M.M., Pratt, L.H., The phytochrome gene family in tomato and the rapid differential evolution of this family in angiosperms (2000) Mol. Biol. Evol., 17, pp. 362-373
  • Bovy, A., High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1 (2002) Plant Cell, 14, pp. 2509-2526
  • Cakir, B., Agasse, A., Gaillard, C., Saumonneau, A., Delrot, S., Atanassova, R., A grape ASR protein involved in sugar and abscisic acid signaling (2003) Plant Cell, 15, pp. 2165-2180
  • Chiapello, H., Lisacek, F., Caboche, M., Henaut, A., Codon usage and gene function are related in sequences of Arabidopsis thaliana (1998) Gene, 209, pp. GC1-GC38
  • Dóczi, R., Kondrak, M., Kovacs, G., Beczner, F., Banfalvi, Z., Conservation of the drought-inducible DS2 genes and divergences from their ASR paralogues in solanaceous species (2005) Plant Physiol. Biochem., 43, pp. 269-276
  • Eshed, Y., Abu-Abied, M., Saranga, Y., Zamir, D., Lycopersicon esculentum lines containing small overlapping introgressions from L. pennellii (1992) Theor. Appl. Genet., 83, pp. 1027-1034
  • Finkelstein, R.R., Gibson, S.I., ABA and sugar interactions regulating development: cross-talk or voices in a crowd? (2002) Curr. Opin. Plant Biol., 5, pp. 26-32
  • Frankel, N., Hasson, E., Iusem, N.D., Rossi, M.S., Adaptive evolution of water-stress induced gene Asr2 in Lycopersicon species dwelling in arid habitats (2003) Mol. Biol. Evol., 20, pp. 1955-1962
  • Goes da Silva, F., Characterizing the grape transcriptome. Analysis of expressed sequence tags from multiple vitis species and development of a compendium of gene expression during berry development (2005) Plant Physiol., 139, pp. 574-597
  • Hall, T.A., BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT (1999) Nucleic Acids Symp. Ser., 41, pp. 95-98
  • Hughes, A.L., Friedman, R., Expression patterns of duplicate genes in the developing root in Arabidopsis thaliana (2005) J. Mol. Evol., 60, pp. 247-256
  • Kalifa, Y., Gilad, A., Konrad, Z., Zaccai, M., Scolnik, P.A., Bar-Zvi, D., The water- and salt-stress-regulated Asr1 (abscisic acid stress ripening) gene encodes a zinc-dependent DNA-binding protein (2004) Biochem. J., 381, pp. 373-378
  • Kimura, M., (1983) The Neutral Theory of Molecular Evolution, , Cambridge University Press, Cambridge
  • Kong, H., Leebens-Mack, J., Ni, W., dePamphilis, C.W., Ma, H., Highly heterogeneous rates of evolution in the SKP1 gene family in plants and animals: functional and evolutionary implications (2004) Mol. Biol. Evol., 21, pp. 117-128
  • Kumar, S., Tamura, K., Jakobsen, I.B., Nei, M., (2001) MEGA2: Molecular Evolutionary Genetics Analysis Software, , Arizona State University, Tempe, Arizona
  • Maskin, L., Differential expression of the members of the Asr gene family in tomato (Lycopersicon esculentum) (2001) Plant Sci., 161, pp. 739-746
  • Nei, M., Gojobori, T., Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions (1986) Mol. Biol. Evol., 3, pp. 418-426
  • Nei, M., Rooney, A.P., Concerted and Birth-and-Death Evolution of Multigene Families (2005) Annu. Rev. Genet., 39, pp. 121-152
  • Ohta, T., Slightly deleterious substitutions in evolution (1973) Nature, 246, pp. 96-98
  • Ohta, T., Role of gene duplication in evolution (1989) Genome, 31, pp. 304-310
  • Quesada, H., Ramos-Onsins, S.E., Aguade, M., Birth-and-death evolution of the Cecropin multigene family in Drosophila (2005) J. Mol. Evol., 60, pp. 1-11
  • Rossi, M.M., Iusem, N.D., Tomato genomic clone homologous to a gene encoding an ABA-induced protein (1994) Plant Physiol., 104, pp. 1073-1074
  • Rossi, M.M., Lijavetzky, D., Bernacchi, D., Hopp, H.E., Iusem, N.D., Asr genes belong to a tomato gene family of at least three closely linked loci located to chromosome 4 (1996) Mol. Gen. Genet., 252, pp. 489-492
  • Sawyer, S.A., Statistical tests for detecting gene conversion (1989) Mol. Biol. Evol., 6, pp. 526-538
  • Treger, J.M., McEntee, K., Structure of the DNA damage-inducible gene DDR48 and evidence for its role in mutagenesis in Saccharomyces cerevisiae (1990) Mol. Cell. Biol., 10, pp. 3174-3184
  • Wang, H.J., Hsu, C.M., Guang, Y.J., Wang, C.S., A lily pollen ASR protein localizes to both cytoplasm and nuclei requiring a nuclear localization signal (2005) Physiol. Plant., 123, pp. 314-320
  • Xia, X., Xie, Z., DAMBE: data analysis in molecular biology and evolution (2001) J. Heredity, 92, pp. 371-373
  • Yang, Z., PAML: a program package for phylogenetic analysis by maximum likelihood (1997) Comput. Appl. Biosci., 13, pp. 555-556
  • Yang, Z., Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution (1998) Mol. Biol. Evol., 15, pp. 568-573
  • Yang, C.Y., Chen, Y.C., Jauh, G.Y., Wang, C.S., A Lily ASR Protein Involves Abscisic Acid Signaling and Confers Drought and Salt Resistance in Arabidopsis (2005) Plant Physiol., 139, pp. 836-846

Citas:

---------- APA ----------
Frankel, N., Carrari, F., Hasson, E. & Iusem, N.D. (2006) . Evolutionary history of the Asr gene family. Gene, 378(1-2), 74-83.
http://dx.doi.org/10.1016/j.gene.2006.05.010
---------- CHICAGO ----------
Frankel, N., Carrari, F., Hasson, E., Iusem, N.D. "Evolutionary history of the Asr gene family" . Gene 378, no. 1-2 (2006) : 74-83.
http://dx.doi.org/10.1016/j.gene.2006.05.010
---------- MLA ----------
Frankel, N., Carrari, F., Hasson, E., Iusem, N.D. "Evolutionary history of the Asr gene family" . Gene, vol. 378, no. 1-2, 2006, pp. 74-83.
http://dx.doi.org/10.1016/j.gene.2006.05.010
---------- VANCOUVER ----------
Frankel, N., Carrari, F., Hasson, E., Iusem, N.D. Evolutionary history of the Asr gene family. Gene. 2006;378(1-2):74-83.
http://dx.doi.org/10.1016/j.gene.2006.05.010