Artículo

Este artículo es de Acceso Abierto y puede ser descargado en su versión final desde nuestro repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The first specific precursor of porphyrin biosynthesis is δ-aminolevulinic acid. δ-Aminolevulinic acid enters Saccharomyces cerevisiae cells through the γ-aminobutyric acid specific permease Uga4p. It was described that this permease is inducible by γ-aminobutyric acid and its regulation involves several specific and pleiotropic transcriptional factors. However, some studies showed that under certain growth conditions the synthesis of Uga4p was not dependent on the presence of γ-aminobutyric acid. To study the effect of the trans-acting factors Uga43p, Uga3p, Uga35p, Ure2p and Gln3p on the expression of UGA4, we measured γ-aminobutyric acid and δ-aminolevulinic acid uptake in yeast mutant cells, lacking one of these regulatory factors, grown under different conditions. Experiments analyzing the UGA4 promoter using a fusion construction UGA4::lacZ were also carried out. The results show that the constitutive expression of the UGA4 gene found in cells under certain growth conditions depends on the presence of Uga3p and Uga35p. In contrast, Gln3p and Ure2p do not seem to have any effect on this constitutive mechanism. Copyright (C) 2000 Federation of European Microbiological Societies.

Registro:

Documento: Artículo
Título:Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35p
Autor:Garcia, S.C.; Moretti, M.B.; Batlle, A.
Filiación:Ctro. Invest. sobre Porfirinas y P., FCEyN, UBA), Cd. Univ., Pabellon I., Buenos Aires, Argentina
Palabras clave:γ-Aminobutyric acid; δ-Aminolevulinic acid; Transcriptional factor; Transport regulation; Uga4 permease; Yeast; 4 aminobutyric acid; aminolevulinic acid; permease; article; controlled study; gene expression regulation; nonhuman; priority journal; promoter region; protein transport; Saccharomyces cerevisiae; transcription regulation; Alanine; Aminolevulinic Acid; beta-Galactosidase; DNA-Binding Proteins; Fungal Proteins; GABA Plasma Membrane Transport Proteins; gamma-Aminobutyric Acid; Gene Expression Regulation, Fungal; Membrane Transport Proteins; Organic Anion Transporters; Promoter Regions (Genetics); Recombinant Fusion Proteins; Saccharomyces cerevisiae; Saccharomyces cerevisiae Proteins; Transcription Factors; Saccharomyces cerevisiae
Año:2000
Volumen:184
Número:2
Página de inicio:219
Página de fin:224
DOI: http://dx.doi.org/10.1016/S0378-1097(00)00053-7
Título revista:FEMS Microbiology Letters
Título revista abreviado:FEMS Microbiol. Lett.
ISSN:03781097
CODEN:FMLED
CAS:Alanine, 56-41-7; Aminolevulinic Acid, 106-60-5; beta-Galactosidase, EC 3.2.1.23; DAL81 protein, S cerevisiae; DNA-Binding Proteins; Fungal Proteins; GABA permease, 69913-01-5; GABA Plasma Membrane Transport Proteins; gamma-Aminobutyric Acid, 56-12-2; Membrane Transport Proteins; Organic Anion Transporters; Recombinant Fusion Proteins; Saccharomyces cerevisiae Proteins; Transcription Factors; UGA3 protein, S cerevisiae; UGA4 protein, S cerevisiae
PDF:https://bibliotecadigital.exactas.uba.ar/download/paper/paper_03781097_v184_n2_p219_Garcia.pdf
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03781097_v184_n2_p219_Garcia

Referencias:

  • Bermúdez Moretti, M., Correa García, S., Stella, C., Ramos, E., Batlle, A., δ-Aminolevulinic acid transport in Saccharomyces cerevisiae (1993) Int. J. Biochem., 25, pp. 1917-1925
  • Bermúdez Moretti, M., Correa García, S., Ramos, E., Batlle, A., δ-Aminolevulinic acid uptake is mediated by the γ-aminobutyric acid-specific permease Uga4 (1996) Cell. Mol. Biol., 42, pp. 519-523
  • Pietruzsko, R., Fowden, L., 4-Aminobutyric acid metabolism in plants. Metabolism in yeast (1961) Ann. Bot., 25, pp. 491-511
  • Grenson, M., Muyldermans, F., Broman, K., Vissers, S., 4-Aminobutyric acid (GABA) uptake in baker's yeast Saccharomyces cerevisiae is mediated by the general amino acid permease, the proline permease and a specific permease integrated into the GABA-catabolic pathway (1987) Biochemistry (Life Sci. Adv.), 6, pp. 35-39
  • André, B., Hein, C., Grenson, M., Janiaux, J.-C., Cloning and expression of the UGA4 gene encoding the inducible GABA-specific transport protein of Saccharomyces cerevisiae (1993) Mol. Gen. Genet., 237, pp. 17-25
  • André, B., Talibi, D., Soussi-Boudekou, S., Hein, C., Vissers, S., Coornaert, D., Two mutually exclusive regulatory systems inhibit UASGATA, a cluster of 5′-GAT(A/T)A-3′ upstream from the UGA4 gene of Saccharomyces cerevisiae (1995) Nucleic Acids Res., 23, pp. 558-564
  • Bricmont, P.A., Daugherty, J.R., Cooper, T.G., The DAL81 gene product is required for induced expression of two differently regulated nitrogen catabolic genes in Saccharomyces cerevisiae (1991) Mol. Cell. Biol., 11, pp. 1161-1166
  • André, B., The UGA4 gene regulating the GABA catabolic pathway in Saccharomyces cerevisiae encodes a putative zinc-finger protein acting on RNA amount (1990) Mol. Gen. Genet., 220, pp. 269-276
  • Chisholm, G., Cooper, T.G., Isolation and characterization of mutations that produce the allantoin-degrading enzymes constitutively in Saccharomyces cerevisiae (1982) Mol. Cell. Biol., 2, pp. 1088-1095
  • Talibi, D., Grenson, M., André, B., Cis- And trans-activating elements determining induction of the genes of the γ-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae (1995) Nucleic Acids Res., 23, pp. 550-557
  • Cunningham, T.S., Dorrington, R.A., Cooper, T.G., The UGA4 UASNTR site required for GLN3-dependent transcriptional activation also mediates DAL80-responsible regulation and DAL80 protein binding in Saccharomyces cerevisiae (1994) J. Bacteriol., 178, pp. 3470-3479
  • Coffman, J.A., Rai, R., Loprete, D.M., Cunningham, T., Svetlov, V., Cooper, T.G., Cross regulation of four GATA factors that control nitrogen catabolic gene expression in Saccharomyces cerevisiae (1997) J. Bacteriol., 179, pp. 3416-3429
  • Soussi-Boudekou, S., Vissers, S., Urrestarazu, A., Jauniaux, J.-C., André, B., Gzf3p, a fourth GATA factor involved in nitrogen regulated transcription in Saccharomyces cerevisiae (1997) Mol. Microbiol., 23, pp. 1157-1168
  • Coffman, J.A., Rai, R., Cunningham, T., Svetlov, V., Cooper, T.G., Gat1p, a GATA-family protein whose production is sensitive to nitrogen catabolite repression, participates in transcription activation of nitrogen catabolic genes in Saccharomyces cerevisiae (1996) Mol. Cell. Biol., 16, pp. 847-858
  • Coschinago, P.W., Magasanik, B., The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to glutathione S-transferases (1991) Mol. Cell. Biol., 11, pp. 822-832
  • Blinder, D., Coschigano, P.W., Magasanik, B., Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae (1996) J. Bacteriol., 178, pp. 4734-4736
  • Jacobs, P., Jauniaux, J.-C., Grenson, M., A cis dominant regulatory mutation linked to the argB-argC gene cluster in Saccharomyces cerevisiae (1980) J. Mol. Biol., 139, pp. 691-704
  • Vavra, J.J., Johnson, M.J., Aerobic and anaerobic biosynthesis of amino acids by baker's yeast (1956) J. Biol. Chem., 220, pp. 33-43
  • Bermúdez Moretti, M., Correa García, S., Batlle, A., UGA4 gene expression in Saccharomyces cerevisiae depends on cell growth conditions (1998) Cell. Mol. Biol., 44, pp. 585-590
  • Béchet, J., Grenson, M., Wiame, J.-M., Mutations affecting the repressibility of arginine biosynthetic enzymes in Saccharomyces cerevisiae (1970) Eur. J. Biochem., 12, pp. 31-39
  • Grenson, M., Hou, C., Crabeel, M., Multiplicity of the amino acid permeases in Saccharomyces cerevisiae IV. Evidence for a general amino acid permease (1970) J. Bacteriol., 103, pp. 770-777
  • Grenson, M., Dubois, E., Piotrowska, M., Drillien, R., Aigle, M., Ammonia assimilation in Saccharomyces cerevisiae is mediated by the two glutamate dehydrogenases. Evidence for the gdhA locus being a structurally gene for the NADP-dependent glutamate dehydrogenase (1974) Mol. Gen. Genet., 128, pp. 73-85
  • Coornaert, D., Vissers, S., André, B., Grenson, M., The UGA43 negative regulatory gene of Saccharomyces cerevisiae contains both a GATA-1 type zinc finger and a putative leucine zipper (1992) Curr. Genet., 221, pp. 301-307
  • André, B., (1991), PhD. Thesis, Free University of Brussels, Brussels; Coornaert, D., Vissers, S., André, B., The pleiotropic UGA35 (DURL) regulatory gene of Saccharomyces cerevisiae: Cloning, sequence and identity with the DAL81 gene (1991) Gene, 97, pp. 163-171
  • Gietz, R.D., Schiestl, R.H., Transforming yeast with DNA (1995) Methods Mol. Cell. Biol., 5, pp. 255-269
  • Sambrook, J., Fritsch, E.F., Maniatis, T., (1989) Molecular Cloning, 2nd Edn., , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  • Myers, A.M., Tzagoloff, A., Kinney, D.M., Lusty, C.J., Yeast shutlle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions (1986) Gene, 45, pp. 299-310
  • Miller, J.H., (1972) Experiments in Molecular Genetics, p. 403. , Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
  • Ramos, F., El Guezzar, M., Grenson, M., Wiame, J.-M., Mutations affecting the enzymes involved in the utilization of 4-aminobutyric acid as nitrogen source by the yeast Saccharomyces cerevisiae (1985) Eur. J. Biochem., 149, pp. 401-404
  • Vissers, S., André, B., Muyldermans, F., Grenson, M., Positive and negative regulatory elements control the expression of UGA4 gene encoding the inducible 4-aminobutyric acid-specific permease in Saccharomyces cerevisiae (1989) Eur. J. Biochem., 181, pp. 357-361

Citas:

---------- APA ----------
Garcia, S.C., Moretti, M.B. & Batlle, A. (2000) . Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35p. FEMS Microbiology Letters, 184(2), 219-224.
http://dx.doi.org/10.1016/S0378-1097(00)00053-7
---------- CHICAGO ----------
Garcia, S.C., Moretti, M.B., Batlle, A. "Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35p" . FEMS Microbiology Letters 184, no. 2 (2000) : 219-224.
http://dx.doi.org/10.1016/S0378-1097(00)00053-7
---------- MLA ----------
Garcia, S.C., Moretti, M.B., Batlle, A. "Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35p" . FEMS Microbiology Letters, vol. 184, no. 2, 2000, pp. 219-224.
http://dx.doi.org/10.1016/S0378-1097(00)00053-7
---------- VANCOUVER ----------
Garcia, S.C., Moretti, M.B., Batlle, A. Constitutive expression of the UGA4 gene in Saccharomyces cerevisiae depends on two positive-acting proteins, Uga3p and Uga35p. FEMS Microbiol. Lett. 2000;184(2):219-224.
http://dx.doi.org/10.1016/S0378-1097(00)00053-7