Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this paper we analyze a low-order family of mixed finite element methods for the numerical solution of the Stokes problem and a second order elliptic problem, in two space dimensions. In these schemes, the pressure is interpolated on a mesh of rectangular elements, while the velocity is approximated on a triangular mesh obtained by dividing each rectangle into four triangles by its diagonals. For the lowest order P1Q0, a global spurious pressure mode is shown to exist and so this element, as P1Q1 case analyzed in Armentano and Blasco (2010), is unstable. However, following the ideas given in Bochev et al. (2006), a simple stabilization procedure can be applied, when we approximate the solution of the Stokes problem, such that the new P1Q0 and P1Q1 methods are unconditionally stable, and achieve optimal accuracy with respect to solution regularity with simple and straightforward implementations. Moreover, we analyze the application of our P1Q1 element to the mixed formulation of the elliptic problem. In this case, by introducing the modified mixed weak form proposed in Brezzi et al. (1993), optimal order of accuracy can be obtained with our stabilized P1Q1 elements. Numerical results are also presented, which confirm the existence of the spurious pressure mode for the P1Q0 element and the excellent stability and accuracy of the new stabilized methods. © 2017 Elsevier B.V.

Registro:

Documento: Artículo
Título:Stabilization of low-order cross-grid PkQl mixed finite elements
Autor:Armentano, M.G.
Filiación:Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IMAS-Conicet, Buenos Aires, 1428, Argentina
Palabras clave:Cross-grid elements; Elliptic problems; Mixed finite elements; Stability analysis; Stokes problem; Computational mechanics; Mesh generation; Navier Stokes equations; Numerical methods; Stabilization; Elliptic problem; Grid elements; Mixed finite elements; Stability analysis; Stokes problem; Finite element method
Año:2018
Volumen:330
Página de inicio:340
Página de fin:355
DOI: http://dx.doi.org/10.1016/j.cam.2017.09.002
Título revista:Journal of Computational and Applied Mathematics
Título revista abreviado:J. Comput. Appl. Math.
ISSN:03770427
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03770427_v330_n_p340_Armentano

Referencias:

  • Armentano, M.G., Blasco, J., Stable and unstable cross-grid PkQl mixed finite elements for the Stokes problem (2010) J. Comput. Appl. Math., 234 (5), pp. 1404-1416
  • Badia, S., Codina, R., Stokes, Maxwell and Darcy: A single finite element approximation for three model problems (2012) Appl. Numer. Math., 62, pp. 246-263
  • Boffi, D., Minimal stabilizations of the Pk+1-Pk approximation of the stationary Stokes equations (1995) Math. Models Methods Appl. Sci., 5 (2), pp. 213-224
  • Boffi, D., Gastaldi, L., On the quadrilateral Q2-P1 element for the Stokes problem (2002) Internat. J. Numer. Methods Fluids, 39 (4), pp. 1001-1011
  • Brezzi, F., Falk, R., Stability of higher-order Hood-Taylor methods (1991) SIAM J. Numer. Anal., 28 (3), pp. 581-590
  • Chen, X., Han, W., Huang, H., Analysis of some mixed elements for the Stokes problem (1997) J. Comput. Appl. Math., 85, pp. 19-35
  • Fortin, M., Old and new finite elements for incompressible flows (1981) Internat. J. Numer. Methods Fluids, 1 (4), pp. 347-364
  • Kim, Y., Lee, S., Stable Finite Element Methods for the Stokes Problem (2000) Int. J. Math. Math. Sci., 24 (10), pp. 699-714
  • Kim, Y., Lee, S., Modified Mini finite element for the Stokes problem in R2 or R3 (2000) Adv. Comput. Math., 12, pp. 261-272
  • Taylor, C., Hood, P., A numerical solution of the Navier–Stokes equations using the finite element technique (1973) Int. J. Comput. Fluids, 1 (1), pp. 73-100
  • Bochev, P.B., Dohrmann, C.R., Gunzburger, M.D., Stabilization of low-order mixed finite elements for the Stokes equations (2006) SIAM J. Numer. Anal., 44 (1), pp. 82-101
  • Araya, R., Barrenechea, G.R., Poza, A., An adaptive stabilized finite element method for the generalized Stokes problem (2008) J. Comput. Appl. Math., 214, pp. 457-479
  • Blasco, J., An anisotropic GLS-stabilized finite element method for incompressible flow problems (2008) Comput. Methods Appl. Mech. Engrg., 197, pp. 3712-3723
  • Blasco, J., Codina, R., Space and time error estimates for a first order, pressure stabilized finite element method for the incompressible Navier–Stokes equations (2001) Appl. Numer. Math., 38, pp. 475-497
  • Codina, R., Blasco, J., A finite element formulation for the Stokes problem allowing equal velocity-pressure interpolation (1997) Comput. Methods Appl. Mech. Engrg., 143 (3-4), pp. 373-391
  • Codina, R., Blasco, J., Analysis of a pressure-stabilized finite element approximation of the stationary Navier–Stokes equations (2000) Numer. Math., 87, pp. 59-81
  • Kechkar, N., Silvester, D., Analysis of locally stabilized mixed finite element methods for the Stokes problem (1992) Math. Comp., 58 (197), pp. 1-10
  • Kim, Y., Lee, S., Stable finite element methods with divergence augmentation for the Stokes problem (2001) Appl. Math. Lett., 14, pp. 321-326
  • Svácek, P., On approximation of non-Newtonian fluid flow by the finite element method (2008) J. Comput. Appl. Math., 218, pp. 167-174
  • Brezzi, F., Fortin, M., Marini, L.D., Mixed finite element methods with contoinuous stresses (1993) Math. Models Methods Appl. Sci., 3 (2), pp. 275-287
  • Boffi, D., Brezzi, F., Demkowicz, L., Durán, R.G., Falk, R., Fortin, M., (2008) Mixed Finite Elements, Compatibility Conditions, and Applications, Lectures Notes in Mathematics, 1939
  • Brezzi, F., Fortin, M., (1991) Mixed and Hybrid Finite Element Methods, , Springer Berlin Heidelberg, New York
  • Raviart, P.A., Thomas, J.M., A mixed finite element method for second order elliptic problems (1977) Mathematical Aspects of the Finite ElementMethod, Lectures Notes in Math., 606. , Galligani I. Magenes E. Springer Verlag
  • Bochev, P.B., Dohrmann, C.R., A computational study of stabilized, low-order C0 finite element approximations of Darcy equations (2006) Comput. Mech., 38, pp. 323-333
  • Brunner, F., Radu, F., Knabner, P., Analysis of upwind-mixed hybrid finite element method for transport problems (2014) SIAM J. Numer. Anal., 52 (1), pp. 1938-1953
  • Demlow, A., Suboptimal and optimal convergence in mixed element methods (2002) SIAM J. Numer. Anal., 39 (6), pp. 1938-1953
  • Gatica, G.N., Meddahi, S., Oyarzúa, R., A conforming mixed finite-element method for the coupling of fluid flow with porous media flow (2009) IMA J. Numer. Anal., 29, pp. 86-108
  • Stenberg, R., A family of mixed finite element for the elasticity problem (1988) Numer. Math., 53 (190), pp. 513-538
  • Clément, P., Approximation by finite element functions using local regularization (1975) Rev. Fr. Autom. Inform. Recherche Opér. Sér. Rairo Anal. Numér., 9 (R-2), pp. 77-84
  • Girault, V., Raviart, P.A., (1986) Finite Element Methods for Navier–Stokes Equations, , Springer- Verlag Germany, Berlin
  • Ciarlet, P., (1978) The Finite Element Method for Elliptic Problems, , North-Holland Amsterdan

Citas:

---------- APA ----------
(2018) . Stabilization of low-order cross-grid PkQl mixed finite elements. Journal of Computational and Applied Mathematics, 330, 340-355.
http://dx.doi.org/10.1016/j.cam.2017.09.002
---------- CHICAGO ----------
Armentano, M.G. "Stabilization of low-order cross-grid PkQl mixed finite elements" . Journal of Computational and Applied Mathematics 330 (2018) : 340-355.
http://dx.doi.org/10.1016/j.cam.2017.09.002
---------- MLA ----------
Armentano, M.G. "Stabilization of low-order cross-grid PkQl mixed finite elements" . Journal of Computational and Applied Mathematics, vol. 330, 2018, pp. 340-355.
http://dx.doi.org/10.1016/j.cam.2017.09.002
---------- VANCOUVER ----------
Armentano, M.G. Stabilization of low-order cross-grid PkQl mixed finite elements. J. Comput. Appl. Math. 2018;330:340-355.
http://dx.doi.org/10.1016/j.cam.2017.09.002