Artículo

Acosta, G.; Monzón, G."The minimal angle condition for quadrilateral finite elements of arbitrary degree" (2017) Journal of Computational and Applied Mathematics. 317:218-234
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

We study W1,p Lagrange interpolation error estimates for general quadrilateral Qk finite elements with k≥2. For the most standard case of p=2 it turns out that the constant C involved in the error estimate can be bounded in terms of the minimal interior angle of the quadrilateral. Moreover, the same holds for any p in the range 1≤p<3. On the other hand, for 3≤p we show that C also depends on the maximal interior angle. We provide some counterexamples showing that our results are sharp. © 2016 Elsevier B.V.

Registro:

Documento: Artículo
Título:The minimal angle condition for quadrilateral finite elements of arbitrary degree
Autor:Acosta, G.; Monzón, G.
Filiación:Universidad de Buenos Aires, IMAS-CONICET, Departamento de Matematica, Pabellón I Facultad de Ciencias Exactas y Naturales, Buenos Aires, 1428, Argentina
Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutiérrez 1150, (1613) Los Polvorines, Buenos Aires, Argentina
Palabras clave:Anisotropic finite elements; Lagrange interpolation; Maximum angle condition; Minimum angle condition; Quadrilateral elements; Interpolation; Anisotropic finite elements; Lagrange interpolations; Maximum angle condition; Minimum angle condition; Quadrilateral elements; Lagrange multipliers
Año:2017
Volumen:317
Página de inicio:218
Página de fin:234
DOI: http://dx.doi.org/10.1016/j.cam.2016.11.041
Handle:http://hdl.handle.net/20.500.12110/paper_03770427_v317_n_p218_Acosta
Título revista:Journal of Computational and Applied Mathematics
Título revista abreviado:J. Comput. Appl. Math.
ISSN:03770427
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03770427_v317_n_p218_Acosta

Referencias:

  • Ciarlet, P.G., Raviart, P.A., Interpolation theory over curved elements, with applications to finite elements methods (1972) Comput. Methods Appl. Mech. Engrg., 1, pp. 217-249
  • Babuška, I., Aziz, A.K., On the angle condition in the finite element method (1976) SIAM J. Numer. Anal., 13, pp. 214-226
  • Jamet, P., Estimations d'erreur pour des éléments finis droits presque degénérés (1976) RAIRO Anal. Numer., 10, pp. 46-61
  • Jamet, P., Estimation of the interpolation error for quadrilateral finite elements which can degenerate into triangles (1977) SIAM J. Numer. Anal., 14, pp. 925-930
  • Zenisek, A., Vanmaele, M., The interpolation theorem for narrow quadrilateral isoparametric finite elements (1995) Numer. Math., 72, pp. 123-141
  • Zenisek, A., Vanmaele, M., Applicability of the Bramble Hilbert lemma in interpolation problems of narrow quadrilateral isoparametric finite elements (1995) J. Comput. Appl. Math., 63, pp. 109-122
  • Apel, T., Anisotropic interpolation error estimates for isoparametric quadrilateral finite elements (1998) Computing, 60, pp. 157-174
  • Apel, T., (1999) : Anisotropic Finite Elements: Local Estimates and Applications, Advances in Numerical Mathematics, , B. G. Teubner Stuttgart, Leipzig
  • Acosta, G., Durán, R.G., Error estimates for Q1 isoparametric elements satisfying a weak angle condition (2000) SIAM J. Numer. Anal., 38, pp. 1073-1088
  • Acosta, G., Monzón, G., Interpolation error estimates in W1,p for degenerate Q1 isoparametric elements (2006) Numer. Math., 104, pp. 129-150
  • Mao, S., Nicaise, S., Shi, Z.C., On the interpolation error estimates for Q1 quadrilateral finite elements (2008) SIAM J. Numer. Anal., 47, pp. 467-486
  • Acosta, G., Durán, R.G., The maximum angle condition for mixed and nonconforming elements: Application to the Stokes equations (1999) SIAM J. Numer. Anal., 37, pp. 18-36
  • Verfhürt, R., Error estimates for some quasi-interpolation operators (1999) RAIRO Math. Model. Numer. Anal., 33 (4), pp. 695-713
  • Arnold, D.N., Boffi, D., Falk, R.S., Approximation by quadrilateral finite elements (2002) Math. Comp., 71, p. 239. , 909–922

Citas:

---------- APA ----------
Acosta, G. & Monzón, G. (2017) . The minimal angle condition for quadrilateral finite elements of arbitrary degree. Journal of Computational and Applied Mathematics, 317, 218-234.
http://dx.doi.org/10.1016/j.cam.2016.11.041
---------- CHICAGO ----------
Acosta, G., Monzón, G. "The minimal angle condition for quadrilateral finite elements of arbitrary degree" . Journal of Computational and Applied Mathematics 317 (2017) : 218-234.
http://dx.doi.org/10.1016/j.cam.2016.11.041
---------- MLA ----------
Acosta, G., Monzón, G. "The minimal angle condition for quadrilateral finite elements of arbitrary degree" . Journal of Computational and Applied Mathematics, vol. 317, 2017, pp. 218-234.
http://dx.doi.org/10.1016/j.cam.2016.11.041
---------- VANCOUVER ----------
Acosta, G., Monzón, G. The minimal angle condition for quadrilateral finite elements of arbitrary degree. J. Comput. Appl. Math. 2017;317:218-234.
http://dx.doi.org/10.1016/j.cam.2016.11.041