Artículo

Kratzmann, D.J.; Carey, S.N.; Fero, J.; Scasso, R.A.; Naranjo, J.-A. "Simulations of tephra dispersal from the 1991 explosive eruptions of Hudson volcano, Chile" (2010) Journal of Volcanology and Geothermal Research. 190(3-4):337-352
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The 1991 explosive eruptions of Hudson volcano in southern Chile produced 2.7 km3 (dense rock equivalent) of basalt and trachyandesite tephra during the period August 8-15. The initial basaltic phase (phase I, August 8-9) produced a maximum column height of 12 km above sea level (ASL) and tephra fallout was directed to the north and northeast by the prevailing winds. The paroxysmal trachyandesitic phase (phase II, August 12-15) involved at least three separate events with a maximum ∼ 18-km-high (ASL) eruption column inferred from satellite temperature data. During the initial 24 h of this phase the plume was advected almost directly south, before swinging towards the east as the wind changed direction. The plume was ultimately directed to the southeast and stayed relatively fixed at this bearing for the remainder of the eruption. These temporal variations in the main dispersal direction during the earlier stages of the phase II eruption produced a much wider overall deposit than would be expected from a plume with a relatively fixed transport direction (e.g., latter stages of phase II). The Lagrangian ash tracking model PUFF was utilized to simulate the 1991 explosive eruptions and was able to successfully reproduce the aerial distribution and temporal evolution of the plumes. The optimal agreement between the observed and simulated plumes occurs when the highest concentration of ash particles coincides with the tropopause, a height that is typically lower than the maximum observed column heights for the 1991 eruptions. Gravitational settling of the laterally spreading umbrella region (e.g., Pinatubo 1991) may result in the concentration of ash at this level. This may account for differences in column height estimates between ground- or satellite-based and lithic-based models. The plume associated with the paroxysmal phase (August 12-15, 1991) produced a multilayered deposit composed of alternating layers of fine ash and pumice lapilli. The highly stratified nature of the fall deposit is likely the result of multiple eruptive events coupled with a time varying wind field. A strongly changing wind direction that occurred during the earlier stages of the paroxysmal eruption could have produced variations in the dominant grain size being deposited between fine ash and pumice lapilli during individual eruptive sequences. © 2009 Elsevier B.V. All rights reserved.

Registro:

Documento: Artículo
Título:Simulations of tephra dispersal from the 1991 explosive eruptions of Hudson volcano, Chile
Autor:Kratzmann, D.J.; Carey, S.N.; Fero, J.; Scasso, R.A.; Naranjo, J.-A.
Filiación:Graduate School of Oceanography, Univ. of Rhode Island, South Ferry Rd, Narragansett, RI 02882, United States
Departamento de Geología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, 1428 Buenos Aires, Argentina
Servicio Nacional de Geología y Minería, Casilla, 10465, Santiago, Chile
Palabras clave:Hudson volcano; PUFF simulations; Southern Volcanic Zone; tephra dispersal; tropospheric transport; wandering plume; Aerial distribution; Alternating layers; Ash particles; Column height; Concentration of; Eruptive events; Explosive eruption; Grain size; Gravitational settlings; Hudson Volcano; Lagrangian; Multi-layered; Phase I; Phase II; Pinatubo; Prevailing winds; Temperature data; Temporal evolution; Temporal variation; Tephra dispersal; Tephra fallout; Time varying; Tracking models; Transport direction; Volcanic zone; Wind directions; Wind field; Deposits; Oceanography; Troposphere; Volcanoes; andesite; atmospheric transport; basalt; computer simulation; concentration (composition); dispersion; explosive volcanism; mantle plume; numerical model; pumice; tephra; tropopause; volcanic ash; volcanic eruption; volcaniclastic deposit; volcanology; Aisen; Chile; Mount Hudson; Southern Volcanic Zone; Pinatubo
Año:2010
Volumen:190
Número:3-4
Página de inicio:337
Página de fin:352
DOI: http://dx.doi.org/10.1016/j.jvolgeores.2009.11.021
Título revista:Journal of Volcanology and Geothermal Research
Título revista abreviado:J. Volcanol. Geotherm. Res.
ISSN:03770273
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03770273_v190_n3-4_p337_Kratzmann

Referencias:

  • Aloisi, M., D'Agostino, M., Dean, K.G., Mostaccio, A., Neri, G., Satellite analysis and PUFF simulation of the eruptive cloud generated by the Mount Etna paroxysm of 22 July 1998 (2002) J. Geophys. Res., 107 (B12), p. 2373
  • Bitschene, P.R., Fernandez, M.I., Volcanology and petrology of fallout ashes from the August 1991 eruption of the Hudson Volcano (Patagonian Andes) (1995) The August 1991 eruption of the Hudson Volcano (Patagonian Andes); a thousand days after, pp. 27-54. , Bitschene P., and Medina J. (Eds), Cuvillier, Gottingen
  • (1991) Washington DC, 16 (7), pp. 2-4. , Bulletin of the Global Volcanism Network Smithsonian Institute
  • Carey, S., Sigurdsson, H., The 1982 eruptions of El Chichón volcano, Mexico (2): Observations and numerical modelling of tephra-fall distribution (1986) Bull. Volcanol., 48 (2-3), pp. 127-141
  • Carey, S., Sigurdsson, H., Temporal variations in column height and magma discharge rate during the 79 A.D. eruption of Vesuvius (1987) Geol. Soc. Am. Bull., 99, pp. 303-314
  • Carey, S., Sparks, R.S.J., Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns (1986) Bull. Volcanol., 48, pp. 109-125
  • Carey, S., Sigurdsson, H., Gardner, J.E., Criswell, W., Variations in column height and magma discharge during the May 18, 1980 Eruption of Mount St. Helens (1990) J. Volcanol. Geotherm. Res., 43, pp. 99-112
  • Constantine, E.K., Bluth, G.J.S., Rose, W.I., TOMS and AVHRR Observations of Drifting Volcanic Clouds From the August 1991 Eruptions of Cerro Hudson (2000) Remote Sensing of Active Volcanism, pp. 45-64. , Mouginis-Mark P., Crisp J.A., and Fink J.H. (Eds), Geophysical Monograph, Washington, DC
  • Doiron, S.D., Bluth, G.J.S., Schneltzer, C.C., Krueger, A.J., Walter, L.S., Transport of the Cerro Hudson SO2 clouds (1991) EOS Trans. AGU, 72 (45), p. 489
  • Fero, J., Carey, S.N., Merrill, J.T., Simulation of the 1980 eruption of Mount St. Helens using the ash-tracking model PUFF (2008) J. Volcanol. Geotherm. Res., 175 (3), pp. 355-366
  • Fero, J., Carey, S.N., Merrill, J.T., Simulating the dispersal of tephra from the 1991 Pinatubo eruption: implications for the formation of widespread ash layers (2009) J. Volcanol. Geotherm. Res., 186 (1-2), pp. 120-131
  • Gutierrez, F., Gioncada, A., Gonzalez-Ferran, O., Lahsen, A., Mazzuoli, R., The Hudson Volcano and surrounding monogenetic centres (Chilean Patagonia): an example of volcanism associated with ridge-trench collision environment (2005) J. Volcanol. Geotherm. Res., 145, pp. 207-233
  • Haberle, S.G., Lumley, S.H., Age and origin of tephras recorded in postglacial lake sediments to the west of the southern Andes, 44°S to 47°S (1998) J. Volcanol. Geotherm. Res., 84 (3-4), pp. 239-256
  • Harris, D.M., Rose, W.I., Roe, R., Thompson, M.R., Radar observations of ash eruptions (1981) USGS Professional Paper, 1250, pp. 323-334. , The 1980 eruptions of Mount St. Helens, Washington. Lipman P.W., and Mullineaux D.R. (Eds)
  • Holasek, R.E., Rose, W.I., Demonstration of use of digital satellite AVHRR images for eruption cloud mapping (1983) Bull. - N. M. Bur. Geol. Miner. Resour. Rep., 131, p. 133
  • Holasek, R.E., Self, S., Woods, A.W., Satellite observations and interpretation of the 1991 Mount Pinatubo eruption plumes (1996) J. Geophys. Res., 101 (B12), pp. 27,635-27,655
  • Holasek, R.E., Woods, A.W., Self, S., Experiments on gas-ash separation processes in volcanic umbrella plumes (1996) J. Volcanol. Geotherm. Res., 70 (3-4), pp. 169-181
  • Kalnay, E., Kanamitsu, M., Kistler, R., The NCEP/NCAR 40-year reanalysis project (1996) Bull. Am. Meteorol. Soc., 77 (3), pp. 437-470
  • Kilian, R., Behrmann, J.H., Geochemical constraints on the sources of Southern Chile Trench sediments and their recycling in arc magmas of the Southern Andes (2003) J. Geol. Soc., 160, pp. 57-70
  • Koyaguchi, T., Volume estimation of tephra-fall deposits from the June 15, 1991, eruption of Mount Pinatubo by theoretical and geological methods (1996) Eruptions and Lahars of Mount Pinatubo, Philippines, pp. 583-600. , Fire and Mud. Newhall C.G., and Punongbayan R.S. (Eds), Philippine Institute of Volcanology and Seismology, Quezon City and University of Washington Press, Seattle and London
  • Koyaguchi, T., Ohno, M., Reconstruction of eruption column dynamics on the basis of grain size of tephra fall deposits 2. Application to the Pinatubo 1991 eruption (2001) J. Geophys. Res., 106 (B4), pp. 6513-6533
  • Krueger, A.J., Walter, L.S., Bhartia, P.K., Schnetzler, C.C., Krotkov, N.A., Sprod, I., Bluth, G.J.S., Volcanic sulfur dioxide measurements from the Total Ozone Mapping Spectrometer (TOMS) instruments (1995) J. Geophys. Res., 100, pp. 14057-14076
  • Matson, M., The 1982 El Chichón Volcano eruptions - a satellite perspective (1984) J. Volcanol. Geotherm. Res., 23 (1-2), pp. 1-10
  • Naranjo, J.A., Stern, C.R., Holocene explosive activity of Hudson Volcano, southern Andes (1998) Bull. Volcanol., 59, pp. 291-306
  • Naranjo, J.A., Moreno, H., Banks, N., La erupción del Volcán Hudson en 1991 (46° S), Región XI, Aisén (1993) Chile Boletin, 44, pp. 1-50
  • Oppenheimer, C., Volcanological applications of meteorological satellites (1998) Int. J. Remote Sens., 19 (15), pp. 2829-2864
  • Prata, A.J., Infrared radiative transfer calculations for volcanic ash clouds (1989) Geophys. Res. Lett., 16, pp. 1293-1296
  • Prata, A.J., Observations of volcanic ash clouds in the 10-12 Am window using AVHRR/2 data (1989) Int. J. Remote Sens., 10, pp. 751-761
  • Rodríguez, S.-R., Siebe, C., Komorowski, J.-C., Abrams, M., The Quetzalapa Pumice: a voluminous late Pleistocene rhyolite deposit in the eastern Trans-Mexican Volcanic Belt (2002) J. Volcanol. Geotherm. Res., 113 (1-2), pp. 177-212
  • Rose, W.I., Advancing remote sensing of volcanic clouds (2003) EOS Trans. AGU, 84, p. 351
  • Rose, W.I., Bluth, G.J.S., Ernst, G.G.J., Integrating retrievals of volcanic cloud characteristics from satellite remote sensors: a summary (2000) Philos. Trans. R. Soc. Lond., 358, pp. 1585-1606
  • Sarna-Wojcicki, A.M., Shipley, S., Waitt Jr., R.B., Dzurisin, D., Wood, S.H., Areal distribution, thickness, mass, volume, and grain size of air-fall ash from the six major eruptions of 1980 (1981) USGS Professional Paper, 1250, pp. 577-600. , The 1980 eruptions of Mount St. Helens, Washington. Lipman P.W., and Mullineaux D.R. (Eds)
  • Scasso, R.A., Carey, S., Morphology and formation of glassy volcanic ash from the August 12-15, 1991 eruption of Hudson Volcano, Chile (2005) Lat. Am. J. Sedimentol. Basin Anal., 12 (1), pp. 3-21
  • Scasso, R.A., Corbella, H., Tiberi, P., Sedimentological analysis of the tephra from the 12-15 August 1991 eruption of Hudson volcano (1994) Bull. Volcanol., 56, pp. 121-132
  • Schoeberl, M.R., Doiron, S.D., Lait, L.R., Newman, P.A., Krueger, A.J., A simulation of the Cerro Hudson SO2 cloud (1993) J. Geophys. Res., 98 (D2), pp. 2949-2955
  • Searcy, C., Dean, K., Stringer, W., PUFF: a high-resolution volcanic ash tracking model (1988) J. Volcanol. Geotherm. Res., 80, pp. 1-16
  • Sigurdsson, H., Carey, S., Cornell, W., Pescatore, T., The eruption of Vesuvius in 79 A.D. (1985) Res. Explor., 1, pp. 332-387
  • Simpson, J.J., Hufford, G., Pieri, D., Berg, J., Failures in detecting volcanic ash from a satellite-based technique (2000) Remote Sens. Environ., 72, pp. 191-217
  • Sparks, R.S.J., The dimensions and dynamics of volcanic eruption columns (1986) Bull. Volcanol., 48, pp. 3-15
  • Stern, C.R., Mid-Holocene tephra on Tierra del Fuego (54° S) derived from the Hudson Volcano (46° S): evidence for a large explosive eruption (1991) Rev. Geol. Chile, 18 (2), pp. 139-146
  • Suzuki, Y.J., Koyaguchi, T., A three-dimensional numerical simulation of spreading umbrella clouds (2009) J. Geophys. Res., 114, pp. B03209. , 10.1029/2007JB005369
  • Tupper, A., Carn, S., Davey, J., Kamada, Y., Potts, R., Prata, F., Tokuno, M., An evaluation of volcanic cloud detection techniques during recent significant eruptions in the western 'Ring of Fire' (2004) Remote Sens. Environ., 91 (1), pp. 27-46
  • Walker, G.P.L., Plinian eruptions and their deposits (1981) Bull. Volcanol., 44, pp. 223-240
  • Watt, S.F.L., Pyle, D.M., Mather, T., Martin, R.S., Matthews, N.E., Fallout of volcanic ash from the May 2008 explosive eruption of Chaitén, Chile (2009) J. Geophys. Res., 114, pp. B04207. , 10.1029/2008JB006219
  • Webley, P.W., Stunder, B.J.B., Dean, K.G., Preliminary sensitivity study of eruption source parameters for operational volcanic ash cloud transport and dispersion models - a case study of the August 1992 eruption of the Crater Peak vent, Mount Spurr, Alaska (2009) J. Volcanol. Geotherm. Res., 186 (1-2), pp. 108-119
  • Wessel, P., Smith, W.H.F., Free software helps map and display data (1991) EOS Trans. AGU, 72 (41), pp. 441-448
  • Woods, A.W., The fluid dynamics and thermodynamics of eruption columns (1988) Bull. Volcanol., 50, pp. 169-193
  • Woods, A.W., Self, S., Thermal disequilibrium at the top of volcanic clouds and its effect on estimates of the column height (1992) Nature, 355, pp. 628-630

Citas:

---------- APA ----------
Kratzmann, D.J., Carey, S.N., Fero, J., Scasso, R.A. & Naranjo, J.-A. (2010) . Simulations of tephra dispersal from the 1991 explosive eruptions of Hudson volcano, Chile. Journal of Volcanology and Geothermal Research, 190(3-4), 337-352.
http://dx.doi.org/10.1016/j.jvolgeores.2009.11.021
---------- CHICAGO ----------
Kratzmann, D.J., Carey, S.N., Fero, J., Scasso, R.A., Naranjo, J.-A. "Simulations of tephra dispersal from the 1991 explosive eruptions of Hudson volcano, Chile" . Journal of Volcanology and Geothermal Research 190, no. 3-4 (2010) : 337-352.
http://dx.doi.org/10.1016/j.jvolgeores.2009.11.021
---------- MLA ----------
Kratzmann, D.J., Carey, S.N., Fero, J., Scasso, R.A., Naranjo, J.-A. "Simulations of tephra dispersal from the 1991 explosive eruptions of Hudson volcano, Chile" . Journal of Volcanology and Geothermal Research, vol. 190, no. 3-4, 2010, pp. 337-352.
http://dx.doi.org/10.1016/j.jvolgeores.2009.11.021
---------- VANCOUVER ----------
Kratzmann, D.J., Carey, S.N., Fero, J., Scasso, R.A., Naranjo, J.-A. Simulations of tephra dispersal from the 1991 explosive eruptions of Hudson volcano, Chile. J. Volcanol. Geotherm. Res. 2010;190(3-4):337-352.
http://dx.doi.org/10.1016/j.jvolgeores.2009.11.021