Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this paper we prove a local monotonicity formula for solutions to an inhomogeneous singularly perturbed diffusion problem of interest in combustion. This type of monotonicity formula has proved to be very useful for the study of the regularity of limits u of solutions of the singular perturbation problem and of {u > 0}, in the global homogeneous case. As a consequence of this formula we prove that u has an asymptotic development at every point in {u > 0} where there is a nonhorizontal tangent ball. These kind of developments have been essential for the proof of the regularity of {u > 0} for Bernoulli and Stefan free boundary problems. We also present applications of our results to the study of the regularity of {u > 0} in the stationary case including, in particular, its regularity in the case of energy minimizers. We present as well a regularity result for traveling waves of a combustion model that relies on our monotonicity formula and its consequences.The fact that our results hold for the inhomogeneous problem allows a very wide applicability. Indeed, they may be applied to problems with nonlocal diffusion and/or transport. © 2007 Springer-Verlag.

Registro:

Documento: Artículo
Título:A local monotonicity formula for an inhomogenous singular perturbation problem and applications
Autor:Lederman, C.; Wolanski, N.
Filiación:Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
Palabras clave:Combustion; Inhomogeneous problems; Monotonicity formula; Singular perturbation problems
Año:2008
Volumen:187
Número:2
Página de inicio:197
Página de fin:220
DOI: http://dx.doi.org/10.1007/s10231-007-0041-6
Título revista:Annali di Matematica Pura ed Applicata
Título revista abreviado:Ann. Mat. Pura Appl.
ISSN:03733114
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03733114_v187_n2_p197_Lederman

Referencias:

  • Athanasopoulos, I., Caffarelli, L.A., Salsa, S., Phase transition problems of parabolic type: Flat free boundaries are smooth (1998) Comm. Pure Appl. Math., 51, pp. 77-112. , 1
  • Berestycki, H., Caffarelli, L.A., Nirenberg, L., Uniform estimates for regularization of free boundary problems (1990) Lecture Notes in Pure and Applied Mathematics, 122, pp. 567-619. , Analysis and Partial Differential Equations. Sadosky C. (ed.) Marcel Dekker, New York
  • Buckmaster, J.D., Ludford, G.S.S., (1982) Theory of Laminar Flames, , Cambridge University Press Cambridge
  • Caffarelli, L.A., A Harnack inequality approach to the regularity of free boundaries. Part I: Lipschitz free boundaries are C 1,α (1987) Rev. Matem. Iberoamericana, 3, pp. 139-162. , 2
  • Caffarelli, L.A., A Harnack inequality approach to the regularity of free boundaries (1989) Part II: Flat Free Boundaries Are Lipschitz. Comm. Pure Appl. Math., 42, pp. 55-78
  • Caffarelli, L.A., Uniform Lipschitz regularity of a singular perturbation problem (1995) Diff. Int. Eqs., 8, pp. 1585-1590. , 7
  • Caffarelli, L.A., Jerison, D., Kenig, C.E., Global energy minimizers for free boundary problems and full regularity in three dimensions. Noncompact problems at the intersection of geometry, analysis, and topology (2004) Contemp. Math., 350, pp. 83-97. , Amer. Math. Soc., Providence
  • Caffarelli, L.A., Kenig, C., Gradient estimates for variable coefficient parabolic equations and singular perturbation problems (1998) Amer. J. Math., 120, pp. 391-439. , 2
  • Caffarelli, L.A., Lederman, C., Wolanski, N., Uniform estimates and limits for a two phase parabolic singular perturbation problem (1997) Indiana Univ. Math. J., 46, pp. 453-490. , 2
  • Caffarelli, L.A., Petrosyan, A., Shahgholian, H., Regularity of a free boundary in parabolic potential theory (2004) J. Am. Math. Soc., 17, pp. 827-869. , 4
  • Caffarelli, L.A., Vazquez, J.L., A free boundary problem for the heat equation arising in flame propagation (1995) Trans. Amer. Math. Soc., 347, pp. 411-441
  • Fife, P., Some Nonclassical Trends in Parabolic and Parabolic-Like Evolutions (2003) Trends in Nonlinear Analysis, pp. 153-191. , Springer, Berlin
  • Lederman, C., Wolanski, N., Singular perturbation in a nonlocal diffusion problem (2006) Commun. PDE, 31, pp. 195-241. , 2
  • Lederman, C., Wolanski, N., A two phase elliptic singular perturbation problem with a forcing term (2006) J. Math. Pures. Appl., 86, pp. 552-589. , 6
  • Vázquez, J.L., The free boundary problem for the heat equation with fixed gradient condition (1995) Proceedings International Conference on Free Boundary Problems and Applications, , Zakopane, Poland
  • Weiss, G.S., Partial regularity for weak solutions of an elliptic free boundary problem (1988) Comm. Partial Diff. Eqs., 23, pp. 439-455. , 3,4
  • Weiss, G.S., A homogeneity property improvement approach to the obstacle problem (1999) Invent. Math., 138, pp. 23-50
  • Weiss, G.S., A singular limit arising in combustion theory: Fine properties of the free boundary (2003) Calc. Variations Partial Diff. Eqs., 17, pp. 311-340. , 3

Citas:

---------- APA ----------
Lederman, C. & Wolanski, N. (2008) . A local monotonicity formula for an inhomogenous singular perturbation problem and applications. Annali di Matematica Pura ed Applicata, 187(2), 197-220.
http://dx.doi.org/10.1007/s10231-007-0041-6
---------- CHICAGO ----------
Lederman, C., Wolanski, N. "A local monotonicity formula for an inhomogenous singular perturbation problem and applications" . Annali di Matematica Pura ed Applicata 187, no. 2 (2008) : 197-220.
http://dx.doi.org/10.1007/s10231-007-0041-6
---------- MLA ----------
Lederman, C., Wolanski, N. "A local monotonicity formula for an inhomogenous singular perturbation problem and applications" . Annali di Matematica Pura ed Applicata, vol. 187, no. 2, 2008, pp. 197-220.
http://dx.doi.org/10.1007/s10231-007-0041-6
---------- VANCOUVER ----------
Lederman, C., Wolanski, N. A local monotonicity formula for an inhomogenous singular perturbation problem and applications. Ann. Mat. Pura Appl. 2008;187(2):197-220.
http://dx.doi.org/10.1007/s10231-007-0041-6