Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte la política de Acceso Abierto del editor

Abstract:

A detailed theoretical study on 3-dimethylamino-l-propylamine (DMPA), 1-(2-aminoethyl)-piperidine (2-AEPip) and 3-(aminopropyl)-morpholine (3-APMo) is presented. These are special nucleophiles of appropriate flexible structure, regarding their inter- and intramolecular hydrogen bond (H-bond) self-aggregation states, that are of interest in connection with our last studies of Aromatic Nucleophilic Substitution (ANS) carried out in aprotic solvents. According to kinetic results, ANS reactions of 1-halo-2,4-dinitrobenzenes with DMPA and 2-AEPip in toluene are third-order in amine (overall fourth order kinetics), results that can be interpreted in terms of the “dimer nucleophile mechanism”. By contrast, the reactions with 3-APMo shows second-order in amine, consistent with the classical ANS mechanism, suggesting that this diamine reacts in the monomeric state due to an internal H-bond formation (“intramolecular dimer”). To provide valuable insight into the predominant type of H-bond formed we performed ab initio Density Funcional Theory calculations on the above mentioned amines determining the optimal geometry and its corresponding energy in vacuum for monomers and dimers at the B3LYP/6-31++G(d) level. We implemented a methodology to simultaneously evaluate Counterpoise corrections and solvent effects within the polarized continuum model (PCM). In all cases we found that solvation energies are favorable and H-bonded dimers are more stable than their monomers. Consistent with kinetic results, for 3-APMo the dimerization energy is much lower than for 2-AEPip and DMPA. These theoretical findings are significant and are in line with available experimental results that shows the nucleophile structure is crucial to determine the predominant type of H-bonds in ANS reactions of diamines in aprotic solvents. © 2013, Association Quimica Argentina. All right reserved.

Registro:

Documento: Artículo
Título:A DFT study of hydrogen bond formation into nucleophilic diamines in aprotic solvent media
Autor:Bergero, F.; Alvaro, C.E.S.; Nudelman, N.S.; de Debiaggi, S.R.
Filiación:Depto. de Física, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina
Depto. de Química, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina
Depto. de Química Orgánica, Universidad de Buenos Aires, Ciudad UniversitariaBuenos Aires 1428, Argentina
National Research Council of Argentina (CONICET), Argentina
Palabras clave:Aprotic solvents; Counterpoise correction method; DFT calculations; Diamines; Hydrogen bond; Polarizable continuum model
Año:2013
Volumen:100
Página de inicio:35
Página de fin:47
Título revista:Journal of the Argentine Chemical Society
Título revista abreviado:J. Argent. Chem. Soc.
ISSN:03650375
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03650375_v100_n_p35_Bergero

Referencias:

  • Ribeiro, R.F., Marenich, A.V., Cramer, C.J., Truhlar, D.G., (2011) Phys. Chem. Chem. Phys, 13
  • Scheiner, S., (1997) Hydrogen Bonding: A Theoretical Perspective, , Ed. Oxford University Press, New York
  • Desiraju, G.R., Steiner, T., (1999) The Weak Hydrogen Bond in Structural Chemistry and Biology, , Ed. Oxford University Press Inc., New York
  • Jeffrey, G.A., (1997) An Introduction to Hydrogen Bonding, , Ed. Oxford University Press, New York
  • Jeffrey, G.A., Saenger, W., (1991) Hydrogen Bonding in Biological Structures, , Ed. Springer-Verlag, Berlin
  • Solimannejad, M., Scheiner, S., (2006) Chem. Phys. Lett, 424, p. 1
  • Koĉevski, V., Pejov, L., (2010) J. Phys. Chem. A, 114, p. 4354
  • Grabowski, S.J., Pfitzner, A., Zabel, M., Dubis, A.T., Palusiak, M., (2004) J. Phys. Chem. B, 108, p. 1831
  • Grabowski, S.J., (2007) J. Phys. Chem. A, 111, p. 3387
  • Boga, C., Forlani, L., Chem, J., (2001) Soc. Perkin Trans, 2, p. 1408
  • Sbarbati Nudelman, N., Marder, M., Gurevich, A., Chem, J., (1993) Soc. Perkin Trans, 2, p. 229
  • Raczynska, E.D., Decouzon, M., Gal, J.F., Maria, P.C., Taft, R.W., Anvia, F., (2000) J. Org. Chem, 65 (15), p. 4635
  • Raczynska, E.D., Duczmal, K., Hallmann, M., (2008) Trends in Org. Chem, 12, p. 85
  • Nudelman, N.S., SNAr Reactions of Amines in Aprotic Solvents (1996) The Chemistry of Amino, Nitroso, Nitro and Related Groups, pp. 1215-1300. , in: S. Patai, (Ed.) , Wiley, Chichester
  • Nudelman, N.S., Alvaro, C.E.S., Yankelevich, J.S., (1997) J. Chem. Soc. Perkin Trans, 2, p. 2125. , and references cited therein
  • Bergero, F., Alvaro, C.E.S., Nudelman, N.S., Ramos de Debiaggi, S., (2009) J. Mol. Struct. (Theochem,), 896, p. 18
  • Marenich, A.V., Cramer, C.J., Truhlar, D.J., (2010) J. Chem. Theory Comput, 6
  • Liakos, D.G., Hansen, A., Neese, F., (2011) J. Chem. Theory Comput, 7, p. 76
  • Řezáč, J., Hobza, P., (2012) J. Chem. Theory Comput, 8, p. 141
  • Alvaro, C.E.S., Ayala, A.D., Nudelman, N.S., (2011) J. Phys. Org. Chem, 24 (2), p. 101
  • Liu, Z., Remsing, R.C., Liu, D., Moyna, G., Pophristic, V., (2009) J. Phys. Chem., B, 113 (20), p. 7041
  • Parr, R.G., Yang, D., (1989) Density-Functional Theory of Atoms and Molecules, , Ed. Oxford University Press, New York, Ch. 3
  • Korth, M., Pitonáck, M., Rezác, J., Hobza, P., (2010) J. Chem. Theory Comput, 6, p. 344
  • Riley, K.E., Pitoňák, M., Černý, J., Hobza, P., (2010) J. Chem. Theory Comput, 6, p. 66
  • Rezác, J., Hobza, P., (2012) J. Chem. Theory Comput, 8 (1), p. 141
  • Krishtal, A., Geldof, D., Vanommeslaeghe, K., Van Alsenoy, C., Geerlings, P., (2012) J. Chem. Theory Comput, 8, p. 125
  • Rao, C.N., Pradeep, T., (1991) Chem. Soc. Rev, 20, p. 477
  • Alvaro, C.E.S., Nudelman, N.S., (2003) Arkivoc, 10, p. 95
  • Alvaro, C.E.S., Nudelman, N.S., (2005) J. Phys. Org. Chem, 18, p. 880
  • Ramondo, F., Bencivenni, L., (1995) J. Chem. Soc. Perkin Trans, 2, p. 1797
  • Nudelman, N.S., Alvaro, C.E.S., (2011) J. Phys. Org. Chem, 24 (11), p. 1067
  • Alvaro, C.E.S., Nudelman, N.S., (2010) Int. J. Chem. Kinet, 42 (12), p. 735
  • Van Duijneveldt, F.B., van Duijneveldt-Van de Rijdt, J.G.C.M., van Lenthe, J.H., (1994) Chem. Rev, 94 (7), p. 1873
  • (2009), M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox; Dewar, M.S.J., Zoebisch, E.G., Healy, R.F., Stewart, J.P., (1985) J. Am. Chem. Soc, 107, p. 3902
  • Becke, A.D., (1993) J. Chem. Phys, 98 (7), p. 5648
  • Lee, C., Yang, C.W., Parr, R.G., (1988) Phys. Rev., B, 37, p. 785
  • González, L., Mó, O., Yañez, M., Elguero, J., (1996) J. Mol. Struct. (Theochem), 371, p. 1
  • González, L., Mó, O., Yañez, M., (1997) J. Phys. Chem., A, 101, p. 9710
  • González, L., Mó, O., Yañez, M., (1998) J. Chem. Phys, 109
  • Luzynski, M., Rusinska-Poszak, D., Mack, H.G., (1997) J. Phys. Chem. A, 101, p. 1542
  • Luzynski, M., Rusinska-Poszak, D., Mack, H.G., (1998) J. Phys. Chem. A, 102, p. 2899
  • González, L., Mó, O., Yañez, M., (1999) J. Org. Chem, 64, p. 2314
  • Tomasi, J., Mennucci, B., Cammi, R., (2005) Chem. Rev, 105, p. 2999
  • Marenich, A.V., Cramer, C.J., Truhlar, D.G., (2009) J. Phys. Chem. B, 113, p. 6378
  • Wang, Q., Newton, M.D., (2008) J. Phys. Chem. B, 112, p. 568
  • Bader, R.F.W., (1991) Chem. Rev, 91, p. 893
  • Biegler-König, F., Schönbohm, J., Bayles, D., (2001) AIM2000, J. Comp. Chem, 22, p. 545
  • Parthasarathi, R., Subramanian, V., Sathyamurthy, N., (2006) J. Phys. Chem. A, 110, p. 3349
  • Matta, C.F., Hernandez-Trujillo, J., Tang, T., Bader, R.W., (2003) Chem. Eur. J, 9, p. 1940
  • Alvaro, C.E.S., Nudelman, N.S., (2011) Trends in Org. Chem, 15, p. 95
  • Alvaro, C.E.S., Nudelman, N.S., (2013) Phys. Chem, 3 (2), p. 39

Citas:

---------- APA ----------
Bergero, F., Alvaro, C.E.S., Nudelman, N.S. & de Debiaggi, S.R. (2013) . A DFT study of hydrogen bond formation into nucleophilic diamines in aprotic solvent media. Journal of the Argentine Chemical Society, 100, 35-47.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03650375_v100_n_p35_Bergero [ ]
---------- CHICAGO ----------
Bergero, F., Alvaro, C.E.S., Nudelman, N.S., de Debiaggi, S.R. "A DFT study of hydrogen bond formation into nucleophilic diamines in aprotic solvent media" . Journal of the Argentine Chemical Society 100 (2013) : 35-47.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03650375_v100_n_p35_Bergero [ ]
---------- MLA ----------
Bergero, F., Alvaro, C.E.S., Nudelman, N.S., de Debiaggi, S.R. "A DFT study of hydrogen bond formation into nucleophilic diamines in aprotic solvent media" . Journal of the Argentine Chemical Society, vol. 100, 2013, pp. 35-47.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03650375_v100_n_p35_Bergero [ ]
---------- VANCOUVER ----------
Bergero, F., Alvaro, C.E.S., Nudelman, N.S., de Debiaggi, S.R. A DFT study of hydrogen bond formation into nucleophilic diamines in aprotic solvent media. J. Argent. Chem. Soc. 2013;100:35-47.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03650375_v100_n_p35_Bergero [ ]