Artículo

Urbano, F.J.; Lino, N.G.; González-Inchauspe, C.M.F.; González, L.E.; Colettis, N.; Vattino, L.G.; Wunsch, A.M.; Wemmie, J.A.; Uchitel, O.D. "Acid-sensing ion channels 1a (ASIC1a) inhibit neuromuscular transmission in female mice" (2014) American Journal of Physiology - Cell Physiology. 306(4):C396-C406
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Acid-sensing ion channels (ASIC) open in response to extracellular acidosis. ASIC1a, a particular subtype of these channels, has been described to have a postsynaptic distribution in the brain, being involved not only in ischemia and epilepsy, but also in fear and psychiatric pathologies. High-frequency stimulation of skeletal motor nerve terminals (MNTs) can induce presynaptic pH changes in combination with an acidification of the synaptic cleft, known to contribute to muscle fatigue. Here, we studied the role of ASIC1a channels on neuromuscular transmission. We combined a behavioral wire hanging test with electrophysiology, pharmacological, and immunofluorescence techniques to compare wild-type and ASIC1a lacking mice (ASIC1a -/- knockout). Our results showed that 1) ASIC1a -/- female mice were weaker than wild type, presenting shorter times during the wire hanging test; 2)spontaneous neurotransmitter release was reduced by ASIC1a activation, suggesting a presynaptic location of these channels at individual MNTs; 3) ASIC1a-mediated effects were emulated by extracellular local application of acid saline solutions (pH = 6.0; HEPES/MES-based solution); and 4) immunofluorescence techniques revealed the presence of ASIC1a antigens on MNTs. These results suggest that ASIC1a channels might be involved in controlling neuromuscular transmission, muscle contraction and fatigue in female mice. © 2014 the American Physiological Society.

Registro:

Documento: Artículo
Título:Acid-sensing ion channels 1a (ASIC1a) inhibit neuromuscular transmission in female mice
Autor:Urbano, F.J.; Lino, N.G.; González-Inchauspe, C.M.F.; González, L.E.; Colettis, N.; Vattino, L.G.; Wunsch, A.M.; Wemmie, J.A.; Uchitel, O.D.
Filiación:Laboratorio de Fisiología y Biología Molecular (LFBM), Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE, UBA-CONICET), Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires, Argentina
Department of Psychiatry, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa and Department of Veterans Affairs Medical Center, Iowa City, IA, United States
Palabras clave:Acid-sensing ion channels; Extracellular acidosis; Motor nerve transmission; Presynaptic modulation; Wire hanging; acid-sensing ion channels; extracellular acidosis; motor nerve transmission; presynaptic modulation; wire hanging; Acid Sensing Ion Channels; Animals; Behavior, Animal; Electric Stimulation; Evoked Potentials, Motor; Female; Hand Strength; Hydrogen-Ion Concentration; Male; Mice; Mice, Knockout; Motor Endplate; Motor Neurons; Muscle Contraction; Muscle Fatigue; Muscle, Skeletal; Neuromuscular Junction; Presynaptic Terminals; Sex Factors; Synaptic Transmission; Time Factors
Año:2014
Volumen:306
Número:4
Página de inicio:C396
Página de fin:C406
DOI: http://dx.doi.org/10.1152/ajpcell.00301.2013
Título revista:American Journal of Physiology - Cell Physiology
Título revista abreviado:Am. J. Physiol. Cell Physiol.
ISSN:03636143
CODEN:AJPCD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03636143_v306_n4_pC396_Urbano

Referencias:

  • Abdrakhmanova, G., Dorfman, J., Xiao, Y., Morad, M., Protons enhance the gating kinetics of the α3/β4 neuronal nicotinic acetylcholine receptor by increasing its apparent affinity to agonists (2002) Mol Pharmacol, 61, pp. 369-378
  • Allen, D.G., Lamb, G.D., Westerblad, H., Skeletal muscle fatigue: Cellular mechanisms (2008) Physiol Rev, 88, pp. 287-332
  • Alvarez de la Rosa, D., Krueger, S.R., Kolar, A., Shao, D., Fitzsimonds, R.M., Canessa, C.M., Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system (2003) J Physiol, 546, pp. 77-87
  • Anderson, R.G., Orci, L., A view of acidic intracellular compartments (1988) J Cell Biol, 106, pp. 539-543
  • Askwith, C.C., Wemmie, J.A., Price, M.P., Rokhlina, T., Welsh, M.J., Acidsensing ion channel 2 (ASIC2) modulates ASIC1 H + -activated currents in hippocampal neurons (2004) J Biol Chem, 279, pp. 18296-18305
  • Baron, A., Waldmann, R., Lazdunski, M., ASIC-like, proton-activated currents in rat hippocampal neurons (2002) J Physiol, 539, pp. 485-494
  • Bassilana, F., Champigny, G., Waldmann, R., de Weille, J.R., Heurteaux, C., Lazdunski, M., The acid-sensitive ionic channel subunit ASIC and the mammalian degenerin MDEG form a heteromultimeric H + -gated Na + channel with novel properties (1997) J Biol Chem, 272, pp. 28819-28822
  • Benson, C.J., Xie, J., Wemmie, J.A., Price, M.P., Henss, J.M., Welsh, M.J., Snyder, P.M., Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons (2002) Proc Natl Acad Sci USA, 99, pp. 2338-2343
  • Bolte, S., Cordelieres, F.P., A guided tour into subcellular colocalization analysis in light microscopy (2006) J Microsc, 224, pp. 213-232
  • Burnes, L.A., Kolker, S.J., Danielson, J.F., Walder, R.Y., Sluka, K.A., Enhanced muscle fatigue occurs in male but not female ASIC3-/-mice (2008) Am J Physiol Regul Integr Comp Physiol, 294, pp. R1347-R1355
  • Canessa, C.M., Distribution, subcellular localization and ontogeny of ASIC1 in the mammalian central nervous system (2003) J Physiol, 546, pp. 77-87
  • Cho, J.H., Askwith, C.C., Presynaptic release probability is increased in hippocampal neurons from ASIC1 knockout mice (2008) J Neurophysiol, 99, pp. 426-441
  • Coryell, M.W., Ziemann, A.E., Westmoreland, P.J., Haenfler, J.M., Kurjakovic, Z., Zha, X.M., Price, M., Wemmie, J.A., Targeting ASIC1a reduces innate fear and alters neuronal activity in the fear circuit (2007) Biol Psychiatry, 62, pp. 1140-1148
  • Crawley, J.N., Behavioral phenotyping of transgenic and knockout mice: Experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests (1999) Brain Res, 835, pp. 18-26
  • De Becker, P., Roeykens, J., Reynders, M., McGregor, N., De Meirleir, K., Exercise capacity in chronic fatigue syndrome (2000) Arch Intern Med, 160, pp. 3270-3277
  • Donier, E., Rugiero, F., Jacob, C., Wood, J.N., Regulation of ASIC activity by ASIC4-new insights into ASIC channel function revealed by a yeast two-hybrid assay (2008) Eur J Neurosci, 28, pp. 74-86
  • Depetris, R.S., Nudler, S.I., Uchitel, O.D., Urbano, F.J., Altered synaptic synchrony in motor nerve terminals lacking P/Q-calcium channels (2008) Synapse, 62, pp. 466-471
  • Dube, G.R., Lehto, S.G., Breese, N.M., Baker, S.J., Wang, X., Matulenko, M.A., Honore, P., Brioni, J.D., Electrophysiological and in vivo characterization of A-317567, a novel blocker of acid sensing ion channels (2005) Pain, 117, pp. 88-96
  • Escoubas, P., De Weille, J.R., Lecoq, A., Diochot, S., Waldmann, R., Champigny, G., Moinier, D., Lazdunski, M., Isolation of a tarantula toxin specific for a class of proton-gated Na + channels (2000) J Biol Chem, 275, pp. 25116-25121
  • Fitts, R.H., Cellular mechanisms of fatigue (1994) Physiol Rev, 74, pp. 49-74
  • Garcia-Anoveros, J., Derfler, B., Neville-Golden, J., Hyman, B.T., Corey, D.P., BNaC1 and BNaC2 constitute a new family of human neuronal sodium channels related to degenerins and epithelial sodium channels (1997) Proc Natl Acad Sci USA, 94, pp. 1459-1464
  • Gao, J., Duan, B., Wang, D.G., Deng, X.H., Zhang, G.Y., Xu, L., Xu, T.L., Coupling between NMDA receptor and acid-sensing ion channel contributes to ischemic neuronal death (2005) Neuron, 48, pp. 635-646
  • Gitterman, D.P., Wilson, J., Randall, A.D., Functional properties and pharmacological inhibition of ASIC channels in the human SJ-RH30 skeletal muscle cell line (2005) J Physiol, 562, pp. 759-769
  • Häkkinen, K., Neuromuscular fatigue and recovery in male and female athletes during heavy resistance exercise (1993) Int J Sports Med, 14, pp. 53-59
  • Hicks, A.L., Kent-Braun, J., Ditor, D.S., Sex differences in human skeletal muscle fatigue (2001) Exerc Sport Sci Rev, 29, pp. 109-112
  • Hubbard, J.I., Jones, S.F., Landau, E.M., On the mechanism by which calcium and magnesium affect the spontaneous release of transmitter from mammalian motor nerve terminals (1968) J Physiol, 194, pp. 355-380
  • Juel, C., Muscle pH regulation: Role of training (1998) Acta Physiol Scand, 162, pp. 359-366
  • Kadetoff, D., Kosek, E., The effects of static muscular contraction on blood pressure, heart rate, pain ratings and pressure pain thresholds in healthy individuals and patients with fibromyalgia (2007) Eur J Pain, 11, pp. 39-47
  • Kellenberger, S., Schild, L., Epithelial sodium channel/degenerin family of ion channels: A variety of functions for a shared structure (2002) Physiol Rev, 82, pp. 735-767
  • Kent-Braun, J.A., Ng, A.V., Doyle, J.W., Towse, T.F., Human skeletal muscle responses vary with age and gender during fatigue due to incremental isometric exercise (2002) J Appl Physiol, 93, pp. 1813-1823
  • Lalo, U., Pankratov, Y., North, R.A., Verkhratsky, A., Spontaneous autocrine release of protons activates ASIC-mediated currents in HEK293 cells (2007) J Cell Physiol, 212, pp. 473-480
  • Li, T., Yang, Y., Canessa, C.M., Impact of recovery from desensitization on acid-sensing ion channel-1a (ASIC1a) current and response to high frequency stimulation (2012) J Biol Chem, 287, pp. 40680-40689
  • Light, A.R., Light, A.R., Hughen, R.W., Zhang, J., Rainier, J., Liu, Z., Lee, J., Dorsal root ganglion neurons innervating skeletal muscle respond to physiological combinations of protons, ATP, and lactate mediated by ASIC, P2X, and TRPV1 (2009) J Neurophysiol, 100, pp. 1184-1201
  • Light, A.R., White, A.T., Hughen, R.W., Light, K.C., Moderate exercise increases expression for sensory, adrenergic, and immune genes in chronic fatigue syndrome patients but not in normal subjects (2009) J Pain, 10, pp. 1099-1112
  • Lilley, S., LeTissier, P., Robbins, J., The discovery and characterization of a proton-gated sodium current in rat retinal ganglion cells (2004) J Neurosci, 24, pp. 1013-1022
  • Lingueglia, E., de Weille, J.R., Bassilana, F., Heurteaux, C., Sakai, H., Waldmann, R., Lazdunski, M., A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells (1997) J Biol Chem, 272, pp. 29778-29783
  • Maquet, D., Croisier, J.L., Renard, C., Crielaard, J.M., Muscle performance in patients with fibromyalgia (2002) Joint Bone Spine, 69, pp. 293-299
  • Meeus, M., Nijs, J., Meirleir, K.D., Chronic musculoskeletal pain in patients with the chronic fatigue syndrome: A systematic review (2006) Eur J Pain, 11, pp. 377-386
  • Miesenbock, G., De Angelis, D.A., Rothman, J.E., Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins (1998) Nature (Lond), pp. 192-195
  • Miller, A.E., McDougall, J.D., Tarnopolsky, M.A., Sale, D.G., Gender differences in strength and muscle fiber characteristics (1993) Eur J Appl Physiol Occup Physiol, 66, pp. 254-262
  • Petroff, E.Y., Price, M.P., Snitsarev, V., Gong, H., Korovkina, V., Abboud, F.M., Welsh, M.J., Acid-sensing ion channels interact with and inhibit BK K+ channels (2008) Proc Natl Acad Sci USA, 105, pp. 3140-3144
  • Staud, R., Robinson, M.E., Price, D.D., Isometric exercise has opposite effects on central pain mechanisms in fibromyalgia patients compared to normal controls (2005) Pain, 118, pp. 176-184
  • Takeuchi, A., Takeuchi, N., Active phase of frog's end-plate potential (1959) J Neurophysiol, 22, pp. 395-411
  • Urbano, F.J., Piedras-Rentería, E.S., Jun, K., Shin, H.S., Uchitel, O.D., Tsien, R.W., Altered properties of quantal neurotransmitter release at endplates of mice lacking P/Q-type Ca2+ channels (2003) Proc Natl Acad Sci USA, 100, pp. 3491-3496
  • Waldmann, R., Champigny, G., Voilley, N., Lauritzen, I., Lazdunski, M., The mammalian degenerin MDEG, an amiloride-sensitive cation channel activated by mutations causing neurodegeneration in Caenorhabditis elegans (1996) J Biol Chem, 271, pp. 10433-10436
  • Waldmann, R., Bassilana, F., de Weille, J., Champigny, G., Heurteaux, C., Lazdunski, M., Molecular cloning of a non-inactivating proton-gated Na + channel specific for sensory neurons (1997) J Biol Chem, 272, pp. 20975-20978
  • Wemmie, J.A., Price, M.P., Welsh, M.J., Acid-sensing ion channels: Advances, questions and therapeutic opportunities (2006) Trends Neurosci, 29, pp. 578-586
  • West, W., Hicks, A., Clements, L., Dowling, J., The relationship between voluntary electromyogram, endurance time and intensity of effort in isometric handgrip exercise (1995) Eur J Appl Physiol Occup Physiol, 71, pp. 301-305
  • White, A.T., Light, A.R., Hughen, R.W., Vanhaitsma, T.A., Light, K.C., Differences in metabolite-detecting, adrenergic, and immune gene expression after moderate exercise in patients with chronic fatigue syndrome, patients with multiple sclerosis, and healthy controls (2012) Psychosom Med, 74, pp. 46-54
  • Xiong, Z.G., Zhu, X.M., Chu, X.P., Minami, M., Hey, J., Wei, W.L., McDonald, J.F., Welsh, M.J., Neuroprotection in ischemia: Blocking calcium-permeable acid-sensing ion channels (2004) Cell, 118, pp. 687-698
  • Xiong, Z.G., Pignataro, G., Li, M., Chang, S.Y., Simon, R.P., Acid-sensing ion channels (ASIC) as pharmacological targets for neurodegenerative diseases (2008) Curr Opin Pharmacol, 8, pp. 25-32
  • Yermolaieva, O., Leonard, A.S., Schnizler, M.K., Abboud, F.M., Welsh, M.J., Extracellular acidosis increases neuronal cell calcium by activating acidsensing ion channel 1a (2004) Proc Natl Acad Sci USA, 101, pp. 6752-6757
  • Zha, X.M., Costa, V., Harding, A.M., Reznikov, L., Benson, C.J., Welsh, M.J., ASIC2 subunits target acid-sensing ion channels to the synapse via an association with PSD-95 (2009) J Neurosci, 29, pp. 8438-8446
  • Zhang, L., Haraguchi, S., Koda, T., Hashimoto, K., Nakagawara, A., Muscle atrophy and motor neuron degeneration in human NEDL1 transgenic mice (2011) J Biomed Biotechnol, p. 831092
  • Zhang, Z., Nguyen, K.T., Barrett, E.F., David, G., Vesicular ATPase inserted into the plasma membrane of motor terminals by exocytosis alkalinizes cytosolic pH and facilitates endocytosis (2010) Neuron, 68, pp. 1097-1108
  • Ziemann, A.E., Schnizler, M.K., Albert, G.W., Severson, M.A., Howard III, M.A., Welsh, M.J., Wemmie, J.A., Seizure termination by acidosis depends on ASIC1a (2008) Nat Neurosci, 11, pp. 816-822

Citas:

---------- APA ----------
Urbano, F.J., Lino, N.G., González-Inchauspe, C.M.F., González, L.E., Colettis, N., Vattino, L.G., Wunsch, A.M.,..., Uchitel, O.D. (2014) . Acid-sensing ion channels 1a (ASIC1a) inhibit neuromuscular transmission in female mice. American Journal of Physiology - Cell Physiology, 306(4), C396-C406.
http://dx.doi.org/10.1152/ajpcell.00301.2013
---------- CHICAGO ----------
Urbano, F.J., Lino, N.G., González-Inchauspe, C.M.F., González, L.E., Colettis, N., Vattino, L.G., et al. "Acid-sensing ion channels 1a (ASIC1a) inhibit neuromuscular transmission in female mice" . American Journal of Physiology - Cell Physiology 306, no. 4 (2014) : C396-C406.
http://dx.doi.org/10.1152/ajpcell.00301.2013
---------- MLA ----------
Urbano, F.J., Lino, N.G., González-Inchauspe, C.M.F., González, L.E., Colettis, N., Vattino, L.G., et al. "Acid-sensing ion channels 1a (ASIC1a) inhibit neuromuscular transmission in female mice" . American Journal of Physiology - Cell Physiology, vol. 306, no. 4, 2014, pp. C396-C406.
http://dx.doi.org/10.1152/ajpcell.00301.2013
---------- VANCOUVER ----------
Urbano, F.J., Lino, N.G., González-Inchauspe, C.M.F., González, L.E., Colettis, N., Vattino, L.G., et al. Acid-sensing ion channels 1a (ASIC1a) inhibit neuromuscular transmission in female mice. Am. J. Physiol. Cell Physiol. 2014;306(4):C396-C406.
http://dx.doi.org/10.1152/ajpcell.00301.2013