Artículo

Simon, C.; Kezunovic, N.; Keith Williams, D.; Urbano, F.J.; Garcia-Rill, E. "Cholinergic and glutamatergic agonists induce gamma frequency activity in dorsal subcoeruleus nucleus neurons" (2011) American Journal of Physiology - Cell Physiology. 301(2):C327-C335
Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The dorsal subcoeruleus nucleus (SubCD) is involved in generating two signs of rapid eye movement (REM) sleep: muscle atonia and ponto-geniculo-occipital (PGO) waves. We tested the hypothesis that single cell and/or population responses of SubCD neurons are capable of generating gamma frequency activity in response to intracellular stimulation or receptor agonist activation. Whole cell patch clamp recordings (immersion chamber) and population responses (interface chamber) were conducted on 9- to 20-day-old rat brain stem slices. All SubCD neurons (n = 103) fired at gamma frequency when subjected to depolarizing steps. Two statistically distinct populations of neurons were observed, which were distinguished by their high (>80 Hz, n = 24) versus low (35-80 Hz, n = 16) initial firing frequencies. Both cell types exhibited subthreshold oscillations in the gamma range (n = 43), which may underlie the gamma band firing properties of these neurons. The subthreshold oscillations were blocked by the sodium channel blockers tetrodotoxin (TTX, n = 21) extracellularly and N-(2,6-dimethylphenylcarbamoylmethyl) triethylammonium bromide (QX-314) intracellularly (n = 5), indicating they were sodium channel dependent. Gamma frequency subthreshold oscillations were observed in response to the nonspecific cholinergic receptor agonist carbachol (CAR, n = 11, d = 1.08) and the glutamate receptor agonists N-methyl-D-aspartic acid (NMDA, n = 12, d = 1.09) and kainic acid (KA, n = 13, d = 0.96), indicating that cholinergic and glutamatergic inputs may be involved in the activation of these subthreshold currents. Gamma band activity also was observed in population responses following application of CAR (n = 4, P <0.05), NMDA (n = 4, P < 0.05) and KA (n = 4, P < 0.05). Voltage-sensitive, sodium channel-dependent gamma band activity appears to be a part of the intrinsic membrane properties of SubCD lneurons. © 2011 the American Physiological Society.

Registro:

Documento: Artículo
Título:Cholinergic and glutamatergic agonists induce gamma frequency activity in dorsal subcoeruleus nucleus neurons
Autor:Simon, C.; Kezunovic, N.; Keith Williams, D.; Urbano, F.J.; Garcia-Rill, E.
Filiación:Center for Translational Neuroscience, Departments of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, United States
Departments of Biometry, University of Arkansas for Medical Sciences, Little Rock, AR, United States
Instituto de Fisiologia, Biologia Molecular, y Neurociencias IFIBYNE-CONICET, University of Buenos Aires, Buenos Aires, Argentina
Palabras clave:Arousal; Carbachol; Kainic acid; N-methyl-D-aspartic acid; Rapid eye movement sleep; carbachol; cholinergic receptor; cholinergic receptor stimulating agent; glutamate receptor; glutamate receptor agonist; kainic acid; lidocaine ethobromide; n methyl dextro aspartic acid; sodium channel; tetrodotoxin; action potential; animal experiment; animal tissue; article; brain nerve cell; cell size; gamma rhythm; immunocytochemistry; locus ceruleus; membrane potential; nonhuman; oscillation; patch clamp; priority journal; rat; Action Potentials; Analysis of Variance; Animals; Brain Waves; Cholinergic Agonists; Excitatory Amino Acid Agonists; Kinetics; Linear Models; Neurons; Oscillometry; Patch-Clamp Techniques; Pons; Rats; Rats, Sprague-Dawley; Sleep, REM; Sodium Channel Blockers; Sodium Channels; Rattus
Año:2011
Volumen:301
Número:2
Página de inicio:C327
Página de fin:C335
DOI: http://dx.doi.org/10.1152/ajpcell.00093.2011
Título revista:American Journal of Physiology - Cell Physiology
Título revista abreviado:Am. J. Physiol. Cell Physiol.
ISSN:03636143
CODEN:AJPCD
CAS:carbachol, 462-58-8, 51-83-2; kainic acid, 487-79-6; lidocaine ethobromide, 21306-56-9; n methyl dextro aspartic acid, 6384-92-5; tetrodotoxin, 4368-28-9, 4664-41-9; Cholinergic Agonists; Excitatory Amino Acid Agonists; Sodium Channel Blockers; Sodium Channels
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03636143_v301_n2_pC327_Simon

Referencias:

  • Azouz, R., Gray, C.M., Nowak, L.G., McCormick, D.A., Physiological properties of inhibitory interneurons in cat striate cortex (1997) Cereb Cortex, 7, pp. 534-545
  • Baghdoyan, H.A., Rodrigo-Angulo, M.L., McCarley, R.W., Hobson, J.A., A neuroanatomical gradient in the pontine tegmentum for the cholinoceptive induction of desynchronized sleep signs (1987) Brain Res, 414, pp. 245-261
  • Baghdoyan, H.A., Rodrigo-Angulo, M.L., McCarley, R.W., Hobson, J.A., Site-specific enhancement and suppression of desynchronized sleep signs following cholinergic stimulation of three brainstem regions (1984) Brain Res, 306, pp. 39-52
  • Barraza, D., Kita, H., Wilson, C.J., Slow spike frequency adaptation in neurons of the rat subthalamic nucleus (2009) J Neurophysiol, 102, pp. 3689-3697
  • Boissard, R., Gervasoni, D., Schmidt, M.H., Barbagli, B., Fort, P., Luppi, P.H., The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: A combined microinjection and functional neuroanatomical study (2002) Eur J Neurosci, 16, pp. 1959-1973
  • Brown, R.E., Winston, S., Basheer, R., Thakkar, M.M., McCarley, R.W., Electrophysiological characterization of neurons in the dorsolateral pontine rapid-eye-movement sleep induction zone of the rat: Intrinsic membrane properties and responses to carbachol and orexins (2006) Neuroscience, 143, pp. 739-755
  • Datta, S., Activation of phasic pontine-wave generator: A mechanism for sleep-dependent memory processing (2006) Sleep Biological Rhythms, 4, pp. 16-26
  • Datta, S., Evidence that REM sleep is controlled by the activation of brain stem pedunculopontine tegmental kainate receptor (2002) J Neurophysiol, 87, pp. 1790-1798
  • Datta, S., Hobson, J.A., Neuronal activity in the caudolateral peribrachial pons: Relationship to PGO waves and rapid eye movements (1994) J Neurophysiol, 71, pp. 95-109
  • Datta, S., Maclean, R.R., Neurobiological mechanisms for the regulation of mammalian sleep-wake behavior: Reinterpretation of historical evidence and inclusion of contemporary cellular and molecular evidence (2007) Neurosci Biobehav Rev, 31, pp. 775-824
  • Datta, S., Patterson, E.H., Siwek, D.F., Brainstem afferents of the cholinoceptive pontine wave generation sites in the rat (1999) Sleep Res Online, 2, pp. 79-82
  • Datta, S., Siwek, D.F., Patterson, E.H., Cipolloni, P.B., Localization of pontine PGO wave generation sites and their anatomical projections in the rat (1998) Synapse, 30, pp. 409-423
  • Datta, S., Siwek, D.F., Stack, E.C., Identification of cholinergic and noncholinergic neurons in the pons expressing phosphorylated cyclic adenosine monophosphate response element-binding protein as a function of rapid eye movement sleep (2009) Neuroscience, 163, pp. 397-414
  • Delorme, A., Makeig, S., EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis (2004) J Neurosci Methods, 134, pp. 9-21
  • Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M., Reitboeck, H.J., Coherent oscillations: A mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat (1988) Biol Cybern, 60, pp. 121-130
  • Elliott, A.A., Elliott, J.R., Characterization of TTX-sensitive and TTXresistant sodium currents in small cells from adult rat dorsal root ganglia (1993) J Physiol, 463, pp. 39-56
  • Gray, C.M., Singer, W., Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex (1989) Proc Natl Acad Sci USA, 86, pp. 1698-1702
  • Heister, D.S., Hayar, A., Charlesworth, A., Yates, C., Zhou, Y.H., Garcia-Rill, E., Evidence for electrical coupling in the subcoeruleus (SubC) nucleus (2007) J Neurophysiol, 97, pp. 3142-3147
  • Heister, D.S., Hayar, A., Garcia-Rill, E., Cholinergic modulation of GABAergic and glutamatergic transmission in the dorsal subcoeruleus: Mechanisms for REM sleep control (2009) Sleep, 32, pp. 1135-1147
  • Jouvet-Mounier, D., Astic, L., Study of the course of sleep in the young rat during the 1st postnatal month (1968) CR Seances Soc Biol Fil, 162, pp. 119-123
  • Karlsson, K.A., Gall, A.J., Mohns, E.J., Seelke, A.M., Blumberg, M.S., The neural substrates of infant sleep in rats (2005) PLoS Biol, e143, p. 3
  • Kezunovic, N., Urbano, F.J., Simon, C., Hyde, J., Smith, K., Garcia-Rill, E., Mechanism behind gamma band activity in the pedunculopontine nucleus (PPN) Eur J Neurosci, , In press
  • Llinas, R.R., Grace, A.A., Yarom, Y., Vitro neurons in mammalian cortical layer 4 exhibit intrinsic oscillatory activity in the 10- to 50-Hz frequency range (1991) Proc Natl Acad Sci USA, 88, pp. 897-901
  • Lu, J., Sherman, D., Devor, M., Saper, C.B., A putative flip-flop switch for control of REM sleep (2006) Nature, 441, pp. 589-594
  • Marks, G.A., Farber, J., Roffwarg, H.P., Metencephalic localization of ponto-geniculo-occipital waves in the albino rat (1980) Exp Neurol, 69, pp. 667-677
  • Mavanji, V., Ulloor, J., Saha, S., Datta, S., Neurotoxic lesions of phasic pontine-wave generator cells impair retention of 2-way active avoidance memory (2004) Sleep, 27, pp. 1282-1292
  • Middleton, S.J., Racca, C., Cunningham, M.O., Traub, R.D., Monyer, H., Knopfel, T., Schofield, I.S., Whittington, M.A., High-frequency network oscillations in cerebellar cortex (2008) Neuron, 58, pp. 763-774
  • Mitler, M.M., Dement, W.C., Cataplectic-like behavior in cats after microinjections of carbachol in pontine reticular formation (1974) Brain Res, 68, pp. 335-343
  • Mouret, J., Delorme, F., Jouvet, M., Lesions of the pontine tegmentum and sleep in rats (1967) C R Seances Soc Biol Fil, 161, pp. 1603-1606
  • Palva, S., Monto, S., Palva, J.M., Graph properties of synchronized cortical networks during visual working memory maintenance (2010) Neuroimage, 49, pp. 3257-3268
  • Phillips, S., Takeda, Y., Greater frontal-parietal synchrony at low gammaband frequencies for inefficient than efficient visual search in human EEG (2009) Int J Psychophysiol, 73, pp. 350-354
  • Roy, M.L., Narahashi, T., Differential properties of tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels in rat dorsal root ganglion neurons (1992) J Neurosci, 12, pp. 2014-2111
  • Sanford, L.D., Morrison, A.R., Mann, G.L., Harris, J.S., Yoo, L., Ross, R.J., Sleep patterning and behaviour in cats with pontine lesions creating REM without atonia (1994) J Sleep Res, 3, pp. 233-240
  • Simon, C., Kezunovic, N., Ye, M., Hyde, J., Hayar, A., Williams, D.K., Garcia-Rill, E., Gamma band unit activity and population responses in the pedunculopontine nucleus (2010) J Neurophysiol, 104, pp. 463-474
  • Singer, W., Synchronization of cortical activity and its putative role in information processing and learning (1993) Annu Rev Physiol, 55, pp. 349-374
  • Takakusaki, K., Kitai, S.T., Ionic mechanisms involved in the spontaneous firing of tegmental pedunculopontine nucleus neurons of the rat (1997) Neuroscience, 78, pp. 771-794
  • Vanderwolf, C.H., What is the significance of gamma wave activity in the pyriform cortex? (2000) Brain Res, 877, pp. 125-133
  • Vanni-Mercier, G., Sakai, K., Lin, J.S., Jouvet, M., Mapping of cholinoceptive brainstem structures responsible for the generation of paradoxical sleep in the cat (1989) Arch Ital Biol, 127, pp. 133-164
  • Velik, R., From single neuron-firing to consciousness-towards the true solution of the binding problem (2010) Neurosci Biobehav Rev, 34, pp. 993-1001
  • (2006) Neurotransmitters and Neuromodulators, , Von Bohlen und Halbach O, Dermietzel R (Editors), Weinheim, Germany: Wiley-VCH
  • Voss, U., Holzmann, R., Tuin, I., Hobson, J.A., Lucid dreaming: A state of consciousness with features of both waking and non-lucid dreaming (2009) Sleep, 32, pp. 1191-1200
  • White, J.A., Alonso, A., Kay, A.R., A heart-like Na+ current in the medial entorhinal cortex (1993) Neuron, 11, pp. 1037-1047
  • Whittington, M.A., Stanford, I.M., Colling, S.B., Jefferys, J.G., Traub, R.D., Spatiotemporal patterns of gamma frequency oscillations tetanically induced in the rat hippocampal slice (1997) J Physiol, 502, pp. 591-607
  • Yamamoto, K., Mamelak, A.N., Quattrochi, J.J., Hobson, J.A., A cholinoceptive desynchronized sleep induction zone in the anterodorsal pontine tegmentum: Spontaneous and drug-induced neuronal activity (1990) Neuroscience, 39, pp. 295-304
  • Zhou, L., Gall, D., Qu, Y., Prigogine, C., Cheron, G., Tissir, F., Schiffmann, S.N., Goffinet, A., Maturation of "neocortex isole" in vivo in mice (2010) J Neurosci, 30, pp. 7928-7939

Citas:

---------- APA ----------
Simon, C., Kezunovic, N., Keith Williams, D., Urbano, F.J. & Garcia-Rill, E. (2011) . Cholinergic and glutamatergic agonists induce gamma frequency activity in dorsal subcoeruleus nucleus neurons. American Journal of Physiology - Cell Physiology, 301(2), C327-C335.
http://dx.doi.org/10.1152/ajpcell.00093.2011
---------- CHICAGO ----------
Simon, C., Kezunovic, N., Keith Williams, D., Urbano, F.J., Garcia-Rill, E. "Cholinergic and glutamatergic agonists induce gamma frequency activity in dorsal subcoeruleus nucleus neurons" . American Journal of Physiology - Cell Physiology 301, no. 2 (2011) : C327-C335.
http://dx.doi.org/10.1152/ajpcell.00093.2011
---------- MLA ----------
Simon, C., Kezunovic, N., Keith Williams, D., Urbano, F.J., Garcia-Rill, E. "Cholinergic and glutamatergic agonists induce gamma frequency activity in dorsal subcoeruleus nucleus neurons" . American Journal of Physiology - Cell Physiology, vol. 301, no. 2, 2011, pp. C327-C335.
http://dx.doi.org/10.1152/ajpcell.00093.2011
---------- VANCOUVER ----------
Simon, C., Kezunovic, N., Keith Williams, D., Urbano, F.J., Garcia-Rill, E. Cholinergic and glutamatergic agonists induce gamma frequency activity in dorsal subcoeruleus nucleus neurons. Am. J. Physiol. Cell Physiol. 2011;301(2):C327-C335.
http://dx.doi.org/10.1152/ajpcell.00093.2011