Artículo

La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

In this paper we study the blow-up problem for a non-local diffusion equation with a reaction term, ut (x, t) = ∫Ω J (x - y) (u (y, t) - u (x, t)) d y + up (x, t) . We prove that non-negative and non-trivial solutions blow up in finite time if and only if p > 1. Moreover, we find that the blow-up rate is the same as the one that holds for the ODE ut = up, that is, limt ↗ T (T - t)frac(1, p - 1) {norm of matrix} u ({dot operator}, t) {norm of matrix}∞ = (frac(1, p - 1))frac(1, p - 1). Next, we deal with the blow-up set. We prove single point blow-up for radially symmetric solutions with a single maximum at the origin, as well as the localization of the blow-up set near any prescribed point, for certain initial conditions in a general domain with p > 2. Finally, we show some numerical experiments which illustrate our results. © 2008 Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term
Autor:Pérez-Llanos, M.; Rossi, J.D.
Filiación:Departamento de Matemáticas, U. Carlos III de Madrid, 28911 Leganés, Spain
Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, U. de Buenos Aires, 1428 Buenos Aires, Argentina
Palabras clave:Blow-up; Non-local diffusion; Boundary conditions; Blow-up; Initial conditions; Neumann boundary condition; Nonlocal diffusion; Nontrivial solution; Numerical experiments; Radially symmetric solution; Single point blow-up; Diffusion
Año:2009
Volumen:70
Número:4
Página de inicio:1629
Página de fin:1640
DOI: http://dx.doi.org/10.1016/j.na.2008.02.076
Título revista:Nonlinear Analysis, Theory, Methods and Applications
Título revista abreviado:Nonlinear Anal Theory Methods Appl
ISSN:0362546X
CODEN:NOAND
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_0362546X_v70_n4_p1629_PerezLlanos

Referencias:

  • Andreu, F., Mazón, J.M., Rossi, J.D., Toledo, J., The Neumann problem for nonlocal nonlinear diffusion equations (2008) J. Evol. Equations, 8 (1), pp. 189-215
  • F. Andreu, J.M. Mazón, J.D. Rossi, J. Toledo, A nonlocal p-Laplacian evolution equation with Neumann boundary conditions, J. Math. Pures Appl. (in press); Bates, P., Chmaj, A., An integrodifferential model for phase transitions: Stationary solutions in higher dimensions (1999) J. Statist. Phys., 95, pp. 1119-1139
  • Bates, P., Fife, P., Ren, X., Wang, X., Travelling waves in a convolution model for phase transitions (1997) Arch. Ration. Mech. Anal., 138, pp. 105-136
  • Bandle, C., Brunner, H., Blow-up in diffusion equations: A survey (1998) J. Comput. Appl. Math., 97, pp. 3-22
  • Carrillo, C., Fife, P., Spatial effects in discrete generation population models (2005) J. Math. Biol., 50 (2), pp. 161-188
  • Chasseigne, E., Chaves, M., Rossi, J.D., Asymptotic behaviour for nonlocal diffusion equations (2006) J. Math. Pures Appl., 86, pp. 271-291
  • Chen, X., Existence, uniqueness and asymptotic stability of travelling waves in nonlocal evolution equations (1997) Adv. Differential Equations, 2, pp. 125-160
  • Chen, X.Y., Matano, H., Convergence, asymptotic periodicity and finite point blow up in one-dimensional semilinear heat equations (1989) J. Differential Equations, 78, pp. 160-190
  • Cortazar, C., Elgueta, M., Rossi, J.D., A non-local diffusion equation whose solutions develop a free boundary (2005) Annales Henri Poincaré, 6 (2), pp. 269-281
  • Cortazar, C., Elgueta, M., Rossi, J.D., Wolanski, N., Boundary fluxes for non-local diffusion (2007) J. Differential Equations, 234, pp. 360-390
  • Cortazar, C., Elgueta, M., Rossi, J.D., Wolanski, N., How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems (2008) Arch. Ration. Mech. Anal., 187 (1), pp. 137-156
  • Fife, P., Some nonclassical trends in parabolic and parabolic-like evolutions (2003) Trends in Nonlinear Analysis, pp. 153-191. , Springer, Berlin
  • Fife, P., Wang, X., A convolution model for interfacial motion: The generation and propagation of internal layers in higher space dimensions (1998) Adv. Differential Equations, 3 (1), pp. 85-110
  • Galaktionov, V., Vázquez, J.L., The problem of blow-up in nonlinear parabolic equations (2002) Discrete Contin. Dynam. Syst. A, 8, pp. 399-433
  • Groisman, P., Rossi, J.D., Asymptotic behaviour for a numerical approximation of a parabolic problem with blowing up solutions (2001) J. Comput. Appl. Math., 135, pp. 135-155
  • Friedman, A., y McLeod, B., Blow-up of positive solutions of semilinear heat equations (1985) Indiana Univ. Math. J., 34 (2), pp. 425-447
  • Ignat, L.I., Rossi, J.D., A nonlocal convection-diffusion equation (2007) J. Funct. Anal., 251 (2), pp. 399-437
  • Samarski, A., Galaktionov, V.A., Kurdyunov, S.P., Mikailov, A.P., (1995) Blow-Up in Quasilinear Parabolic Equations, , Walter de Gruyter, Berlin

Citas:

---------- APA ----------
Pérez-Llanos, M. & Rossi, J.D. (2009) . Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term. Nonlinear Analysis, Theory, Methods and Applications, 70(4), 1629-1640.
http://dx.doi.org/10.1016/j.na.2008.02.076
---------- CHICAGO ----------
Pérez-Llanos, M., Rossi, J.D. "Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term" . Nonlinear Analysis, Theory, Methods and Applications 70, no. 4 (2009) : 1629-1640.
http://dx.doi.org/10.1016/j.na.2008.02.076
---------- MLA ----------
Pérez-Llanos, M., Rossi, J.D. "Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term" . Nonlinear Analysis, Theory, Methods and Applications, vol. 70, no. 4, 2009, pp. 1629-1640.
http://dx.doi.org/10.1016/j.na.2008.02.076
---------- VANCOUVER ----------
Pérez-Llanos, M., Rossi, J.D. Blow-up for a non-local diffusion problem with Neumann boundary conditions and a reaction term. Nonlinear Anal Theory Methods Appl. 2009;70(4):1629-1640.
http://dx.doi.org/10.1016/j.na.2008.02.076