Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The anuran peripheral olfactory system is composed of a number of subsystems, represented by distinct neuroepithelia. These include the main olfactory epithelium and vomeronasal organ (found in most tetrapods) and three specialized epithelia of anurans: the buccal-exposed olfactory epithelium of larvae, and the olfactory recess and middle chamber epithelium of postmetamorphic animals. To better characterize the developmental changes in these subsystems across the life cycle, morphometric changes of the nasal chemosensory organs during larval development and metamorphosis were analyzed in three different anuran species (Rhinella arenarum, Hypsiboas pulchellus, and Xenopus laevis). We calculated the volume of the nasal chemosensory organs by measuring the neuroepithelial area from serial histological sections at four different stages. In larvae, the vomeronasal organ was relatively reduced in R. arenarum compared with the other two species; the buccal-exposed olfactory epithelium was absent in X. laevis, and best developed in H. pulchellus. In postmetamorphic animals, the olfactory epithelium (air-sensitive organ) was relatively bigger in terrestrial species (R. arenarum and H. pulchellus), whereas the vomeronasal and the middle chamber epithelia (water-sensitive organs) was best developed in X. laevis. A small olfactory recess (likely homologous with the middle chamber epithelium) was found in R. arenarum juveniles, but not in H. pulchellus. These results support the association of the vomeronasal and middle chamber epithelia with aquatic olfaction, as seen by their enhanced development in the secondarily aquatic juveniles of X. laevis. They also support a role for the larval buccal-exposed olfactory epithelium in assessment of oral contents: it was absent in X. laevis, an obligate suspension feeder, while present in the two grazing species. These initial quantitative results give, for the first time, insight into the functional importance of the peripheral olfactory subsystems across the anuran life cycle. © 2017 Wiley Periodicals, Inc.

Registro:

Documento: Artículo
Título:Quantitative comparative analysis of the nasal chemosensory organs of anurans during larval development and metamorphosis highlights the relative importance of chemosensory subsystems in the group
Autor:Jungblut, L.D.; Reiss, J.O.; Paz, D.A.; Pozzi, A.G.
Filiación:Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA-CONICET) and Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Department of Biological Sciences, Humboldt State University, Arcata, CA, United States
Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET) and Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Palabras clave:amphibians; chemical sensing; comparative anatomy; olfactory; vomeronasal organ; anatomy and histology; animal; Anura; comparative study; epithelium; growth, development and aging; image processing; immunohistochemistry; larva; metamorphosis; olfactory mucosa; species difference; vomeronasal organ; Xenopus laevis; Animals; Anura; Epithelium; Image Processing, Computer-Assisted; Immunohistochemistry; Larva; Metamorphosis, Biological; Olfactory Mucosa; Species Specificity; Vomeronasal Organ; Xenopus laevis
Año:2017
Volumen:278
Número:9
Página de inicio:1208
Página de fin:1219
DOI: http://dx.doi.org/10.1002/jmor.20705
Título revista:Journal of Morphology
Título revista abreviado:J. Morphol.
ISSN:03622525
CODEN:JOMOA
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03622525_v278_n9_p1208_Jungblut

Referencias:

  • Baxi, K.N., Dorries, K.M., Eisthen, H.L., Is the vomeronasal system really specialized for detecting pheromones? (2006) Trends in Neurosciences, 29 (1), pp. 1-7
  • Benzekri, N.A., Reiss, J.O., Olfactory metamorphosis in the coastal tailed frog Ascaphus truei (Amphibia, Anura, Leiopelmatidae) (2011) Journal of Morphology, 273 (1), pp. 68-87
  • Bionda, C.L., Lajmanovich, R.C., Salas, N.E., Martino, A.L., di Tada, I.E., Reproductive ecology of the common South American toad Rhinella arenarum (Anura: Bufonidae): Reproductive effort, clutch size, fecundity, and mate selection (2011) Journal of Herpetology, 45 (2), pp. 261-264
  • Broman, I., Das Organon Vomero-Nasale Jacobsoni - Ein Wassergeruchsorgan! (1920) Anatomische Hefte, 58, pp. 143-191
  • Cooper, R.S., An experimental study of the development of the larval olfactory organ of Rana pipiens Schreber (1943) Journal of Experimental Zoology, 93 (3), pp. 415-451
  • Corfield, J.R., Price, K., Iwaniuk, A.N., Gutierrez-Ibañez, C., Birkhead, T., Wylie, D.R., Diversity in olfactory bulb size in birds reflects allometry, ecology, and phylogeny (2015) Frontiers in Neuroanatomy, 9, p. 102
  • Crossland, M.R., Shine, R., Cues for cannibalism: Cane toad tadpoles use chemical signals to locate and consume conspecific eggs (2011) Oikos, 120, pp. 327-332
  • Date-Ito, A., Ohara, H., Ichikawa, M., Mori, Y., Hagino-Yamagishi, K., Xenopus V1R vomeronasal receptor family is expressed in the main olfactory system (2008) Chemical Senses, 33 (4), pp. 339-346
  • Døving, K.B., Trotier, D., Structure and function of the vomeronasal organ (1998) The Journal of Experimental Biology, 201, pp. 2913-2925
  • Duellman, W.E., Trueb, L., (1986) Biology of amphibians, , #x0026;, New York, McGraw-Hill
  • Forester, D.C., Wisnieski, A., The significance of airborne olfactory cues to the recognition of home area by the dart-poison frog Dendrobates pumilio (1991) Journal of Herpetology, 25 (4), pp. 502-504
  • Fraker, M.E., Hu, F., Cuddapah, V., McCollum, S.A., Relyea, R.A., Hempel, J., Denver, R.J., Characterization of an alarm pheromone secreted by amphibian tadpoles that induces behavioral inhibition and suppression of the neuroendocrine stress axis (2009) Hormones and Behavior, 55 (4), pp. 520-529
  • Freitag, J., Krieger, J., Strotmann, J., Breer, H., Two classes of olfactory receptors in Xenopus laevis (1995) Neuron, 15 (6), pp. 1383-1392
  • Gonzalez, A., Morona, R., Lopez, J.M., Moreno, N., Northcutt, R.G., Lungfishes, like tetrapods, possess a vomeronasal system (2011) Frontiers in Neuroanatomy, 4, p. 130
  • Gonzalo, A., Lopez, P., Martin, J., Learning, memorizing and apparent forgetting of chemical cues from new predators by Iberian green frog tadpoles (2009) Animal Cognition, 12, pp. 745-750
  • Gosner, K.L., A simplified table for staging anurans embryos and larvae with notes on identification (1960) Herpetology, 16, pp. 183-190
  • Gramapurohit, N.P., Veeranagoudar, D.K., Mulkeegoudra, S.V., Shanbhag, B.A., Saidapur, S.K., Kin recognition in Bufo scaber tadpoles: Ontogenetic changes and mechanism (2006) Journal of Ethology, 24 (3), pp. 267-274
  • Green, P.A., Van Valkenburgh, B., Pang, B., Bird, D., Rowe, T., Curtis, A., Respiratory and olfactory turbinal size in canid and arctoid carnivorans (2012) Journal of Anatomy, 221 (6), pp. 609-621
  • Grubb, J.C., Olfactory orientation in southern leopard frogs, Rana utricularia (1975) Herpetologica, 31, pp. 219-221
  • Hagino-Yamagishi, K., Moriya, K., Kubo, H., Wakabayashi, Y., Isobe, N., Saito, S., Yazaki, K., Expression of vomeronasal receptor genes in Xenopus laevis (2004) Journal of Comparative Neurology, 472 (2), pp. 246-256
  • Hagman, M., Shine, R., Understanding the toad code: Behavioural responses of cane toad (Chaunus marinus) larvae and metamorphs to chemical cues (2008) Austral Ecology, 33 (1), pp. 37-44
  • Halpern, M., Martinez-Marcos, A., Structure and function of the vomeronasal system: An update (2003) Progress in Neurobiology, 70 (3), pp. 245-318
  • Hansen, A., Reiss, J.O., Gentry, C.L., Burd, G.D., Ultrastructure of the olfactory organ in the clawed frog, Xenopus laevis, during larval development and metamorphosis (1998) Journal of Comparative Neurology, 398 (2), pp. 273-288
  • Helling, H., Das Geruchsorgan der Anuren, vergleichend-morphologisch betrachtet (1938) Zeitschrift fur Anatomie und Eenwicklungsgeschichte, 108 (4), pp. 587-643
  • Hews, D.K., Alarm response in larval western toads, Bufo boreas: Release of larval chemicals by a natural predator and its effect on predator capture efficiency (1988) Animal Behaviour, 36, pp. 125-133
  • Hews, D.K., Blaustein, A.R., An investigation of the alarm response in Bufo boreas and Rana cascadae tadpoles (1985) Behavioral and Neural Biology, 43, pp. 47-57
  • Hinsberg, V., Die Entwicklung der Nasenhöhle bei Amphibien (1901) Archiv fur Mikroskopische Anatomie, 58, pp. 411-482
  • Iwata, T., Nakada, T., Toyoda, F., Yada, T., Shioda, S., Kikuyama, S., Responsiveness of vomeronasal cells to a newt peptide pheromone, sodefrin as monitored by changes of intracellular calcium concentrations (2013) Peptides, 45, pp. 15-21
  • Jermakowicz, W.J., III, Dorsey, D.A., Brown, A.L., Wojciechowski, K., Giscombe, C.L., Graves, B.M., Ten Eyck, G.R., Development of the nasal chemosensory organs in two terrestrial anurans: The directly developing frog, Eleutherodactylus coqui (Anura: Leptodactylidae), and the metamorphosing toad, Bufo americanus (Anura: Bufonidae) (2004) Journal of Morphology, 261 (2), pp. 225-248
  • Jungblut, L.D., Paz, D.A., Lopez-Costa, J.J., Pozzi, A.G., Heterogeneous distribution of G protein alpha subunits in the main olfactory and vomeronasal systems of Rhinella (Bufo) arenarum tadpoles (2009) Zoological Science, 26 (10), pp. 722-728
  • Jungblut, L.D., Pozzi, A.G., Paz, D.A., Larval development and metamorphosis of the olfactory and vomeronasal organs in the toad Rhinella (Bufo) arenarum (Hensel, 1867) (2011) Acta Zoologica-Stockholm, 92 (4), pp. 305-315
  • Jungblut, L.D., Pozzi, A.G., Paz, D.A., A putative functional vomeronasal system in anuran tadpoles (2012) Journal of Anatomy, 221 (4), pp. 364-372
  • Jurgens, J.D., The morphology of the nasal region of Amphibia and its bearing on the phylogeny of the group (1971) Annals of the University of Stellenbosch, 46A, pp. 1-146
  • Khalil, S.H., Development of the olfactory organ of the Egyptian Toad, Bufo regularis Reuss. I. Larval period (1978) Folia Morphologica (Prague), 26, pp. 69-74
  • Kiesecker, J.M., Chivers, D.P., Blaustein, A.R., The use of chemical cues in predator recognition by western toad tadpoles (1996) Animal Behaviour, 52, pp. 1237-1245
  • Kiesecker, J.M., Chivers, D.P., Marco, A., Quilchano, C., Anderson, M.T., Blaustein, A.R., Identification of a disturbance signal in larval red-legged frogs, Rana aurora (1999) Animal Behaviour, 57, pp. 1295-1300
  • Kralovec, K., Zakova, P., Muzakova, V., Development of the olfactory and vomeronasal organs in Discoglossus pictus (Discoglossidae, Anura) (2012) Journal of Morphology, 274 (1), pp. 24-34
  • Leinders-Zufall, T., Brennan, P., Widmayer, P., Maul-Pavicic, S.P.C., Jäger, A., Li, M., Boehm, T., MHC class I peptides as chemosensory signals in the vomeronasal organ (2004) Science, 306, pp. 1033-1037. , X. H., …
  • Manzini, I., Schild, D., Olfactory coding in larvae of the African clawed frog Xenopus laevis (2010) The neurobiology of olfaction Boca Raton, pp. 113-119. , #x0026;, In, A. Menini, (Ed.),, FL, CRC Press
  • Mirza, R.S., Ferrari, M.C.O., Kiesecker, J.M., Chivers, D.P., Responses of American toad tadpoles to predation cues: Behavioural response thresholds, threat-sensitivity and acquired predation recognition (2006) Behaviour, 143, pp. 877-889
  • Nieuwkoop, P.D., Faber, J., (1994) Normal table of Xenopus laevis (Daudin), , #x0026;, New York Garland Publishing Inc
  • Nodari, F., Hsu, F.F., Fu, X., Holekamp, T.F., Kao, L.F., Turk, J., Holy, T.E., Sulfated steroids as natural ligands of mouse pheromone-sensing neurons (2008) Journal of Neuroscience, 28 (25), pp. 6407-6418
  • O'Hara, R.K., Blaustein, A.R., Kin preference behavior in Bufo boreas tadpoles (1982) Behavioral Ecology and Sociobiology, 11 (1), pp. 43-49
  • Paz, D.A., Alonso, D.G., Pisano, A., Casco, V.H., Knudsen, K.A., Peralta Soler, A., Expression of isoforms of the neural cell adhesion molecule (NCAM) and polysialic acid during the development of the Bufo arenarum olfactory system (1995) The International Journal of Developmental Biology, 39 (6), pp. 1005-1013
  • Poth, D., Wollenberg, K.C., Vences, M., Schulz, S., Volatile amphibian pheromones: Macrolides from mantellid frogs from Madagascar (2012) Angewandte Chemie International Edition, 51 (9), pp. 2187-2190
  • Prasad, B.C., Reed, R.R., Chemosensation: Molecular mechanisms in worms and mammals (1999) Trends in Genetics, 15 (4), pp. 150-153
  • Reiss, J.O., Eisthen, H.L., Comparative anatomy and physiology of chemical senses in amphibians (2008) Sensory evolution on the threshold: Adaptations in secondarily aquatic vertebrates, pp. 43-63. , #x0026;, In, J. G. M. Thewissen, &, S. Nummela, (Eds.),, Berkeley and Los Angeles, California, University of California Press
  • Rowedder, W., Die Entwicklung des Geruchsorgans bei Alytes obstetricians und Bufo vulgaris (1937) Zeitschrift Fuer Anatomie Und Entwicklungsgeschichte, 107, pp. 91-123
  • Sansone, A., Hassenklöver, T., Offner, T., Fu, X., Holy, T.E., Manzini, I., Dual processing of sulphated steroids in the olfactory system of an anuran amphibian (2015) Frontiers in Cellular Neuroscience, 9, p. 373
  • Schmidt, A., Wake, M.H., Olfactory and vomeronasal systems of caecilians (Amphibia: Gymnophiona) (1990) Journal of Morphology, 205, pp. 255-268
  • Schubert, S.N., Houck, L.D., Feldhoff, P.W., Feldhoff, R.C., Woodley, S.K., The effects of sex on chemosensory communication in a terrestrial salamander (Plethodon shermani) (2008) Hormones and Behavior, 54 (2), pp. 270-277
  • Seale, D.B., Obligate and facultative suspension feeding in anuran larvae: Feeding regulation in Xenopus and Rana (1982) The Biological Bulletin, 162, pp. 214-231
  • Shinn, E.A., Dole, J.W., Evidence for a role for olfactory cues in the feeding response of leopard frogs, Rana pipiens (1978) Herpetologica, 34, pp. 167-172
  • Shinn, E.A., Dole, J.W., Evidence for a role for olfactory cues in the feeding response of western toads, Bufo boreas (1979) Copeia, 1979 (1), pp. 163-165
  • Sinsch, U., Migration and orientation in anuran amphibians (1990) Ethology Ecology and Evolution, 2 (1), pp. 65-79
  • Smith, T.D., Laitman, J.T., Bhatnaghar, K.P., The shrinking anthropoid nose, the human vomeronasal organ, and the language of anatomical reduction (2014) The Anatomical Record, 297 (11), pp. 2196-2204
  • Solé, M., Pelz, B., Do male tree frogs feed during the breeding season? Stomach flushing of five syntopic hylid species in Rio Grande do Sul, Brazil (2007) Journal of Natural History, 41 (41-44), pp. 2757-2763
  • Sorensen, P.W., Fine, J.M., Dvornikovs, V., Jeffrey, C.S., Shao, F., Wang, J., Hoye, T.R., Mixture of new sulphated steroids functions as a migratory pheromone in the sealamprey (2005) Nature Chemical Biology, 1 (6), pp. 324-328
  • Starnberger, I., Poth, D., Peram, P.S., Schulz, S., Vences, M., Knudsen, J., Hödl, W., Take time to smell the frogs: Vocal sac glands of reed frogs (Anura: Hyperoliidae) contain species-specific chemical cocktails (2013) Biological Journal of the Linnean Society, 110 (4), pp. 828-838
  • Syed, A.S., Sansone, A., Nadler, W., Manzini, I., Korsching, S.I., Ancestral amphibian v2rs are expressed in the main olfactory epithelium (2013) Proceedings of the National Academy of Sciences of the United States of America, 110 (19), pp. 7714-7719
  • Syed, A.S., Sansone, A., Nadler, W., Manzini, I., Korsching, S.I., Expression of ancestral V2Rs shifts from the main olfactory epithelium of tadpoles to the water nose of adult Xenopus laevis (2015) Chemical Senses, 40 (3), p. 229
  • Taniguchi, K., Toshima, Y., Saito, T.R., Development of the olfactory epithelium and vomeronasal organ in the Japanese reddish frog, Rana japonica (1996) The Journal of Veterinary Medical Science, 58 (1), pp. 7-15
  • Tsui, C.L., Development of olfactory organ in Rana nigromaculata (1946) Quarterly Journal of Microscopical Science, 87, pp. 61-90
  • Tsui, C.L., Pan, T.H., The development of the olfactory organ of Kaloula borealis (Barbour) as compared with that of Rana nigromaculata Hallowell (1946) Quarterly Journal of Microscopical Science, 87, pp. 299-316
  • Van Valkenburgh, B., Curtis, A., Samuels, J.X., Bird, D., Fulkerson, B., Meachen-Samuels, J., Slater, G., Aquatic adaptations in the nose of carnivorans: Evidence from the turbinates (2011) Journal of Anatomy, 218, pp. 298-310
  • Van Valkenburgh, B., Smith, T.D., Craven, B.A., Tour of a labyrinth: Exploring the vertebrate nose (2014) The Anatomical Record, 297, pp. 1975-1984
  • Veeranagoudar, D.K., Shanbhag, B.A., Saidapur, S.K., Mechanism of food detection in the tadpoles of the bronze frog Rana temporalis (2004) Acta Ethologica, 7, pp. 37-41
  • Villinger, J., Waldman, B., Self-referent MHC type matching in frog tadpoles (2008) Proceedings of the Royal Society B: Biological Sciences, 275, pp. 1225-1230
  • Wabnitz, P.A., Bowie, J.H., Tyler, M.J., Wallace, J.C., Smith, B.P., Animal behaviour: Aquatic sex pheromone from a male tree frog (1999) Nature, 401 (6752), pp. 444-445
  • Waldman, B., Kin recognition in amphibians (2005) Kin recognition, pp. 162-219. , In, P. G. Hepper, (Ed.),, Cambridge, UK, Cambridge University Press
  • Wang, H., Zhao, H., Tai, F., Zhang, Y., Postembryonic development of the olfactory and vomeronasal organs in the frog Rana chensinensis (2008) Zoological Science, 25 (5), pp. 503-508
  • Woodley, S.K., Sex steroid hormones and sexual dimorphism of chemosensory structures in a terrestrial salamander (Plethodon shermani) (2007) Brain Research, 1138, pp. 95-103
  • Woodley, S.K., Chemical signaling in amphibians (2014) Neurobiology of chemical communication, (8). , https://www.ncbi.nlm.nih.gov/books/NBK201000, In, C. Mucignat-Caretta, (Ed.),, Boca Raton, FL, CRC Press/Taylor & Francis, Chapter, Available from
  • Yopak, K.E., Lisney, T.J., Collin, S.P., Not all sharks are “swimming noses”: Variation in olfactory bulb size in cartilaginous fishes (2015) Brain Structure and Function, 220, pp. 1127-1143
  • Yvroud, M., Développement de l'organe olfactif et des glandes annexes chez Alytes obstetricans Laurenti au cours de la vie larvaire et de la métamorphose (1966) Archives d?Anatomie Microscopique, 55, pp. 387-410

Citas:

---------- APA ----------
Jungblut, L.D., Reiss, J.O., Paz, D.A. & Pozzi, A.G. (2017) . Quantitative comparative analysis of the nasal chemosensory organs of anurans during larval development and metamorphosis highlights the relative importance of chemosensory subsystems in the group. Journal of Morphology, 278(9), 1208-1219.
http://dx.doi.org/10.1002/jmor.20705
---------- CHICAGO ----------
Jungblut, L.D., Reiss, J.O., Paz, D.A., Pozzi, A.G. "Quantitative comparative analysis of the nasal chemosensory organs of anurans during larval development and metamorphosis highlights the relative importance of chemosensory subsystems in the group" . Journal of Morphology 278, no. 9 (2017) : 1208-1219.
http://dx.doi.org/10.1002/jmor.20705
---------- MLA ----------
Jungblut, L.D., Reiss, J.O., Paz, D.A., Pozzi, A.G. "Quantitative comparative analysis of the nasal chemosensory organs of anurans during larval development and metamorphosis highlights the relative importance of chemosensory subsystems in the group" . Journal of Morphology, vol. 278, no. 9, 2017, pp. 1208-1219.
http://dx.doi.org/10.1002/jmor.20705
---------- VANCOUVER ----------
Jungblut, L.D., Reiss, J.O., Paz, D.A., Pozzi, A.G. Quantitative comparative analysis of the nasal chemosensory organs of anurans during larval development and metamorphosis highlights the relative importance of chemosensory subsystems in the group. J. Morphol. 2017;278(9):1208-1219.
http://dx.doi.org/10.1002/jmor.20705