Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

This work presents a bonding study of hydrogen adsorption processes on palladium decorated carbon nanotubes by using the density functional theory (DFT). First, we considered simple decoration models involving single palladium atoms or palladium dimers, and then we analyzed the adsorption of several molecular and dissociated hydrogen coordination structures, including Kubas-type complexes. In all cases we computed the energy, bonding and electronic structure for the different nanotube-supported hydrogen-palladium systems. Our results show that Pd(H2) and Pd2(H2) complexes with relaxed but not dissociated H-H bonds are the most stable adsorbed systems. The role of s, p and d orbitals on the bonding mechanism for all adsorbates and substrates was also addressed. We found intermolecular donor-acceptor C-Pd and Pd-H delocalizations after adsorption. We also studied the palladium clustering effect on the hydrogen uptake based on Kubas-type bonding. © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Bonding in PdH2 and Pd2H2 systems adsorbed on carbon nanotubes: Implications for hydrogen storage
Autor:López-Corral, I.; Irigoyen, B.; Juan, A.
Filiación:Instituto de Química Del sur (UNS-CONICET), Departamento de Química, Universidad Nacional Del sur, Av. Alem 1253, B8000CPB Bahía Blanca, Argentina
Departamento de Ingeniería Química, Universidad de Buenos Aires, Ciudad Universitaria, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina
Instituto de Física Del sur (UNS-CONICET), Departamento de Física, Universidad Nacional Del sur, Av. Alem 1253, B8000CPB Bahía Blanca, Argentina
Palabras clave:Bonding; Carbon nanotubes; Clustering; DFT; Hydrogen storage; Palladium; Adsorption; Bonding; Carbon nanotubes; Chemical bonds; Coordination reactions; Dimers; Electronic structure; Hydrogen; Hydrogen storage; Palladium; Bonding mechanism; Clustering; Clustering effect; Coordination structures; Delocalizations; DFT; Donor-acceptors; Hydrogen adsorption; Palladium compounds
Año:2014
Volumen:39
Número:16
Página de inicio:8780
Página de fin:8790
DOI: http://dx.doi.org/10.1016/j.ijhydene.2013.12.032
Título revista:International Journal of Hydrogen Energy
Título revista abreviado:Int J Hydrogen Energy
ISSN:03603199
CODEN:IJHED
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03603199_v39_n16_p8780_LopezCorral

Referencias:

  • Yürüma, Y., Taralp, A., Veziroglu, T.N., Storage of hydrogen in nanostructured carbon materials (2009) Int J Hydrogen Energy, 34, pp. 3784-3798
  • Yang, R.T., Wang, Y., Catalyzed hydrogen spillover for hydrogen storage (2009) J Am Chem Soc, 131, pp. 4224-4226
  • Lachawiec, A.J., Qi, G.S., Yang, R.T., Hydrogen storage in nanostructured carbons by spillover: Bridge-building enhancement (2005) Langmuir, 21, pp. 11418-11424
  • Zacharia, R., Kim, K.Y., Fazle Kibria, A.K.M., Nahm, K.S., Enhancement of hydrogen storage capacity of carbon nanotubes via spill-over from vanadium and palladium nanoparticles (2005) Chem Phys Lett, 412, pp. 369-375
  • Yang, F.H., Lachawiec, A.J., Yang, R.T., Adsorption of spillover hydrogen atoms on single-wall carbon nanotubes (2006) J Phys Chem B, 110, pp. 6236-6244
  • Zacharia, R., Rather, S., Hwang, S.W., Nahm, K.S., Spillover of physisorbed hydrogen from sputter-deposited arrays of platinum nanoparticles to multi-walled carbon nanotubes (2007) Chem Phys Lett, 434, pp. 286-291
  • Bhat, V.V., Contescu, C.I., Gallego, N.C., The role of destabilization of palladium hydride in the hydrogen uptake of Pd-containing activated carbons (2009) Nanotech, 20, p. 204011
  • Kubas, G.J., Molecular hydrogen complexes: Coordination of a σ bond to transition metals (1988) Acc Chem Res, 21, pp. 120-128
  • Phillips, A.B., Shivaram, B.S., High capacity hydrogen absorption in transition metal-ethylene complexes observed via nanogravimetry (2008) Phys Rev Lett, 100, p. 105505
  • Hamaed, A., Trudeau, M., Antonelli, D.M., H2 storage materials (22 kJ/mol) using organometallic Ti fragments as σ-H2 binding sites (2008) J Am Chem Soc, 130, pp. 6992-6999
  • Yildirim, T., Ciraci, S., Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium (2005) Phys Rev Lett, 94, p. 175501
  • Dag, S., Ozturk, Y., Ciraci, S., Yildirim, T., Adsorption and dissociation of hydrogen molecules on bare and functionalized carbon nanotubes (2005) Phys Rev B, 72, p. 155404
  • Durgun, E., Ciraci, S., Yildirim, T., Functionalization of carbon-based nanostructures with light transition-metal atoms for hydrogen storage (2008) Phys Rev B, 77, p. 85405
  • Xiao, H., Li, S.H., Cao, J.X., First-principles study of Pd-decorated carbon nanotube for hydrogen storage (2009) Chem Phys Lett, 483, pp. 111-114
  • Ströbel, R., Garche, J., Moseley, P.T., Jórissen, L., Wolf, G., Hydrogen storage by carbon materials (2006) J Power Sources, 159, pp. 781-801
  • Sun, Q., Wang, Q., Jena, P., Kawazoe, Y., Clustering of Ti on a C60 surface and its effect on hydrogen storage (2005) J Am Chem Soc, 127, pp. 14582-14583
  • Krasnov, P.O., Ding, F., Singh, A.B., Yakobson, B.I., Clustering of Sc on SWNT and reduction of hydrogen uptake: Ab-initio all-electron calculations (2007) J Phys Chem C, 111, pp. 17977-17980
  • Contescu, C.I., Van Benthem, K., Li, S., Bonifacio, C.S., Pennycook, S.J., Jena, Single Pd atoms in activated carbon fibers and their contribution to hydrogen storage (2011) Carbon, 49, pp. 4050-4058
  • Van Benthem, K., Bonifacio, C.S., Contescu, C.I., Gallego, N.C., Pennycook, S.J., STEM imaging of single Pd atoms in activated carbon fibers considered for hydrogen storage (2011) Carbon, 49, pp. 4059-4063
  • López-Corral, I., Germán, E., Juan, A., Volpe, M.A., Brizuela, G.P., DFT study of hydrogen adsorption on palladium decorated graphene (2011) J Phys Chem C, 115, pp. 4315-4323
  • López-Corral, I., Germán, E., Juan, A., Volpe, M.A., Brizuela, G.P., Hydrogen adsorption on palladium dimer decorated graphene: A bonding study (2012) Int J Hydrogen Energy, 37, pp. 6653-6665
  • Ordejón, P., Artacho, E., Soler, J.M., Self-consistent order-N density-functional calculations for very large systems (1996) Phys Rev B, 53, pp. 10441-R10444
  • Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., The SIESTA method for ab initio order-N materials simulation (2002) J Phys: Condes Matter, 14, pp. 2745-2779
  • Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple (1996) Phys Rev Lett, 77, pp. 3865-3868
  • Junquera, J., Paz, O., Sánchez-Portal, D., Artacho, E., Numerical atomic orbitals for linear-scaling calculations (2001) Phys Rev B, 64, p. 235111
  • Troullier, N., Martins, J.L., Efficient pseudopotentials for plane-wave calculations (1991) Phys Rev B, 43, pp. 1993-2006
  • Hoffmann, R., (1988) Solids and Surfaces: A Chemist's View of Bonding in Extended Structures, , VCH Publ. Inc. New York
  • Landrum, G.A., Glassey, W.V., (2006) Yet Another Extended Hückel Molecular Orbital Package (YAeHMOP), , http://yaehmop.sourceforge.net/, Cornell University Press Ithaca YAeHMOP is freely available on the world wide web at
  • López-Corral, I., Germán, E., Volpe, M.A., Brizuela, G.P., Juan, A., Tight-binding study of hydrogen adsorption on palladium decorated graphene and carbon nanotubes (2010) Int J Hydrogen Energy, 35, pp. 2377-2384
  • Monkhorst, H.J., Pack, J.D., Special points for Brillouin-zone integrations (1976) Phys Rev B, 13, pp. 5188-5192
  • Durgun, E., Dag, S., Bagci, V.M.K., Gülseren, O., Yildirim, T., Ciraci, S., Systematic study of adsorption of single atoms on a carbon nanotube (2003) Phys Rev B, 67, p. 201401
  • Durgun, E., Dag, S., Ciraci, S., Gülseren, O., Energetics and electronic structures of individual atoms adsorbed on carbon nanotubes (2004) J Phys Chem B, 108, pp. 575-582
  • Cabria, I., Lopez, M.J., Alonso, J.A., Theoretical study of the transition from planar to three-dimensional structures of palladium clusters supported on graphene (2010) Phys Rev B, 81, p. 035403
  • Thapa, R., Sen, D., Mitra, M.K., Chattopadhyay, K.K., Palladium atoms and its dimers adsorbed on graphene: First-principles study (2011) Phys B, 406, pp. 368-373
  • Efremenko, I., German, E.D., Sheintuch, M., Density functional study of the interactions between dihydrogen and Pdn (n = 1-4) clusters (2000) J Phys Chem A, 104, pp. 8089-8096
  • Ni, M.Y., Zeng, Z., Density functional study of hydrogen adsorption and dissociation on small Pdn (n = 1-7) clusters (2009) J Mol Struct: THEOCHEM, 910, pp. 14-19
  • Maiti, A., Ricca, A., Metal-nanotube interactions: Binding energies and wetting properties (2004) Chem Phys Lett, 395, pp. 7-11
  • Efremenko, I., Sheintuch, M., Carbon-supported palladium catalysts. Molecular orbital study (2003) J Catal, 214, pp. 53-67

Citas:

---------- APA ----------
López-Corral, I., Irigoyen, B. & Juan, A. (2014) . Bonding in PdH2 and Pd2H2 systems adsorbed on carbon nanotubes: Implications for hydrogen storage. International Journal of Hydrogen Energy, 39(16), 8780-8790.
http://dx.doi.org/10.1016/j.ijhydene.2013.12.032
---------- CHICAGO ----------
López-Corral, I., Irigoyen, B., Juan, A. "Bonding in PdH2 and Pd2H2 systems adsorbed on carbon nanotubes: Implications for hydrogen storage" . International Journal of Hydrogen Energy 39, no. 16 (2014) : 8780-8790.
http://dx.doi.org/10.1016/j.ijhydene.2013.12.032
---------- MLA ----------
López-Corral, I., Irigoyen, B., Juan, A. "Bonding in PdH2 and Pd2H2 systems adsorbed on carbon nanotubes: Implications for hydrogen storage" . International Journal of Hydrogen Energy, vol. 39, no. 16, 2014, pp. 8780-8790.
http://dx.doi.org/10.1016/j.ijhydene.2013.12.032
---------- VANCOUVER ----------
López-Corral, I., Irigoyen, B., Juan, A. Bonding in PdH2 and Pd2H2 systems adsorbed on carbon nanotubes: Implications for hydrogen storage. Int J Hydrogen Energy. 2014;39(16):8780-8790.
http://dx.doi.org/10.1016/j.ijhydene.2013.12.032