Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Ethanol gasification using Cu-Ni-K/γ-Al2O3 catalysts was studied. The reaction was carried out at a low temperature (300°C) and atmospheric pressure. The influence of the diffusional effects, the residence time and the water/ethanol molar ratio in the feed on the ethanol conversion and on the product distribution was analysed. Additional experiments were performed with monometallic catalysts, such as Cu-K/γ-Al 2O3 and Ni-K/γ-Al2O3 catalysts. Ethanol gasification is favoured by a diminution of the diffusional resistances, high residence time and low water to ethanol feed ratio. A probable reaction mechanism is postulated, which is consistent with the experimental results and let identify the function of each metal (copper and nickel). © 2003 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.

Registro:

Documento: Artículo
Título:Hydrogen production via catalytic gasification of ethanol. A mechanism proposal over copper-nickel catalysts
Autor:Mariño, F.; Boveri, M.; Baronetti, G.; Laborde, M.
Filiación:Dept. de Ing. Química, Universidad de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires, Argentina
Palabras clave:Catalysts; Copper; Dehydrogenation; Diffusion; Ethanol; Gasification; Nickel; Particles (particulate matter); Reaction kinetics; Synthesis (chemical); Water; Diffusional resistance; Residence times; Hydrogen fuels
Año:2004
Volumen:29
Número:1
Página de inicio:67
Página de fin:71
DOI: http://dx.doi.org/10.1016/S0360-3199(03)00052-1
Título revista:International Journal of Hydrogen Energy
Título revista abreviado:Int J Hydrogen Energy
ISSN:03603199
CODEN:IJHED
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03603199_v29_n1_p67_Marino

Referencias:

  • Joensen, F., Rostrup-Nielsen, J., Conversion of hydrocarbons and alcohols for fuel cells (2002) J Power Sources, 105, pp. 195-201
  • Ioannides, T., Thermodynamic analysis of ethanol processors for fuel cells applications (2001) J Power Sources, 92, pp. 17-25
  • Freni, S., Rh based catalysts for indirect internal reforming ethanol applications in molten carbonate fuel cells (2001) J Power Sources, 94, pp. 14-19
  • Klouz, V., Fierro, V., Denton, P., Katz, H., Lisse, J.P., Bouvot-Mauduit, S., Mirodatos, C., Ethanol reforming for hydrogen production in a hybrid electric vehicle: Process optimisation (2002) J Power Sources, 105, pp. 26-34
  • Peppley, B., Amphlett, J., Kearns, L., Mann, R., Methanol-steam reforming on Cu/ZnO/Al2O3 . Part 1: The reaction network (1999) Appl Cat, 179, pp. 21-29
  • Peppley, B., Amphlett, J., Kearns, L., Mann, R., Methanol-steam reforming on Cu/ZnO/Al2O3 catalysts. Part 2: A comprehensive kinetic model (1999) Appl Cat, 179, pp. 31-49
  • Mitra, N., (1994) Studies on Steam Reforming of Ethanol for Hydrogen Production, , PhD thesis, Indian Institute of Technology
  • Cavallaro, S., Freni, S., Ethanol steam reforming in a molten carbonate fuel cell: A preliminary kinetic investigation (1996) Int J Hydrogen Energy, 21 (6), pp. 465-469
  • Mariño, F., Boveri, M., Baronetti, G., Laborde, M., Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/γ - Al2O3 catalysts: Effect of Ni (2001) Int J Hydrogen Energy, 26 (7), pp. 665-668
  • Idem, R., Bakhshi, N., Production of hydrogen from methanol. 2. Experimental studies (1994) Ind Eng Chem Res, 33, pp. 2056-2065
  • Mariño, F., Cerella, E., Duhalde, S., Jobbagy, M., Laborde, M., Hydrogen from steam reforming of ethanol. Characterization and performance of copper-nickel supported catalysts (1998) Int J Hydrogen Energy, 23 (12), pp. 1095-1101
  • Mariño, F., Jobbagy, M., Baronetti, G., Laborde, M., Steam reforming of ethanol using Cu-Ni supported catalysts (2000) Stud Surf Sci Catal, 130, pp. 2147-2152
  • Iwasa, N., Takezawa, N., Reforming of ethanol-dehydrogenation to ethyl acetate and steam reforming to acetic acid over copper-based catalysts (1991) Bull Chem Soc Japan, 64, pp. 2619-2623
  • Natal Santiago, M., Sánchez Castillo, M., Cortright, R., Dumesic, J., Catalytic reduction of acetic acid, methyl acetate, and ethyl acetate over silica-supported copper (2000) J Catal, 193 (1), pp. 16-28
  • Froment, G., Bischoff, K., (1979) Chemical Reactor Analysis and Design, pp. 38-40. , New York: Wiley
  • Amadeo, N., Laborde, M., Low temperature water gas shift reaction: Catalyst, kinetics and reactor design and optimization (1996) Trends Chem Eng, 3, pp. 159-183

Citas:

---------- APA ----------
Mariño, F., Boveri, M., Baronetti, G. & Laborde, M. (2004) . Hydrogen production via catalytic gasification of ethanol. A mechanism proposal over copper-nickel catalysts. International Journal of Hydrogen Energy, 29(1), 67-71.
http://dx.doi.org/10.1016/S0360-3199(03)00052-1
---------- CHICAGO ----------
Mariño, F., Boveri, M., Baronetti, G., Laborde, M. "Hydrogen production via catalytic gasification of ethanol. A mechanism proposal over copper-nickel catalysts" . International Journal of Hydrogen Energy 29, no. 1 (2004) : 67-71.
http://dx.doi.org/10.1016/S0360-3199(03)00052-1
---------- MLA ----------
Mariño, F., Boveri, M., Baronetti, G., Laborde, M. "Hydrogen production via catalytic gasification of ethanol. A mechanism proposal over copper-nickel catalysts" . International Journal of Hydrogen Energy, vol. 29, no. 1, 2004, pp. 67-71.
http://dx.doi.org/10.1016/S0360-3199(03)00052-1
---------- VANCOUVER ----------
Mariño, F., Boveri, M., Baronetti, G., Laborde, M. Hydrogen production via catalytic gasification of ethanol. A mechanism proposal over copper-nickel catalysts. Int J Hydrogen Energy. 2004;29(1):67-71.
http://dx.doi.org/10.1016/S0360-3199(03)00052-1