Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The aim of this work was to study phosphate (P) solubilization (and the processes involved in this event) by Talaromyces flavus (BAFC 3125) as a function of carbon and/or nitrogen sources. P solubilization was evaluated in NBRIP media supplemented with different carbon (glucose, sorbitol, sucrose, and fructose) and nitrogen (l-asparagine, urea, ammonium sulfate (AS), and ammonium nitrate (AN) combinations. The highest P solubilization was related to the highest organic acid production (especially gluconic acid) and pH drop for those treatments where glucose was present. Also P solubilization was higher when an inorganic nitrogen source was supplemented to the media when compared to an organic one. Although not being present an organic P source, phosphatase activity was observed. This shows that P mineralization and P solubilization can occur simultaneously, and that P mineralization is not induced by the enzyme substrate. The combination that showed highest P solubilization was for AN-glucose. The highest acid phosphatase activity was for AS-fructose, while for alkaline phosphatase were for AS-fructose and AN-fructose. Acid phosphatase activity was higher than alkaline. P solubilization and phosphatase activity (acid and alkaline) were influenced by the different carbon–nitrogen combinations. A better understanding of phosphate-solubilizing fungi could bring a better use of soil P. © 2015, Springer Science+Business Media New York.

Registro:

Documento: Artículo
Título:Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus
Autor:Stefanoni Rubio, P.J.; Godoy, M.S.; Della Mónica, I.F.; Pettinari, M.J.; Godeas, A.M.; Scervino, J.M.
Filiación:Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, 4th floor Ciudad Universitaria, Buenos Aires, 1428, Argentina
Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, 4th floor Ciudad Universitaria, Buenos Aires, 1428, Argentina
Departamento de Botánica, INIBIOMA (CONICET-UNComahue), Quintral 1250, San Carlos de Bariloche, Río Negro 8400, Argentina
Palabras clave:acid phosphatase; alkaline phosphatase; ammonium nitrate; ammonium sulfate; asparagine; calcium phosphate; carbon; carboxylic acid; enzyme; fructose; glucose; nitrogen; phosphatase; sorbitol; sucrose; urea; calcium phosphate; carbon; culture medium; nitrogen; phosphatase; Article; carbon source; controlled study; enzyme activity; extracellular space; fungus growth; mineralization; nonhuman; priority journal; solubilization; Talaromyces flavus; chemistry; culture medium; enzymology; metabolism; Talaromyces; Calcium Phosphates; Carbon; Culture Media; Nitrogen; Phosphoric Monoester Hydrolases; Talaromyces
Año:2016
Volumen:72
Número:1
Página de inicio:41
Página de fin:47
DOI: http://dx.doi.org/10.1007/s00284-015-0914-7
Título revista:Current Microbiology
Título revista abreviado:Curr. Microbiol.
ISSN:03438651
CODEN:CUMID
CAS:acid phosphatase, 9001-77-8, 9025-88-1; alkaline phosphatase, 9001-78-9; ammonium nitrate, 6484-52-2; ammonium sulfate, 7783-20-2; asparagine, 70-47-3, 7006-34-0; calcium phosphate, 10103-46-5, 13767-12-9, 14358-97-5, 7758-87-4; carbon, 7440-44-0; fructose, 30237-26-4, 57-48-7, 7660-25-5, 77907-44-9; glucose, 50-99-7, 84778-64-3; nitrogen, 7727-37-9; phosphatase, 9013-05-2; sorbitol, 26566-34-7, 50-70-4, 53469-19-5; sucrose, 122880-25-5, 57-50-1; urea, 57-13-6; Calcium Phosphates; Carbon; Culture Media; Nitrogen; Phosphoric Monoester Hydrolases; tricalcium phosphate
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03438651_v72_n1_p41_StefanoniRubio

Referencias:

  • Ahuja, A., Ghosh, S.B., D’Souza, S.F., Isolation of a starch utilizing, phosphate solubilizing fungus on buffered medium and its characterization (2007) Bioresour Technol, 98, pp. 3408-3411. , PID: 17532627, COI: 1:CAS:528:DC%2BD2sXps1Gqt7k%3
  • Bankar, S.B., Bule, M.V., Singhal, R.S., Ananthanarayan, L., Glucose oxidase—an overview (2009) Biotechnol Adv, 27, pp. 489-501. , PID: 19374943, COI: 1:CAS:528:DC%2BD1MXmtlKmu70%3
  • Beever, R.E., Burns, D.J.W., Phosphorus uptake, storage and utilization by fungi (1980) Adv Bot Res, 8, pp. 127-219. , COI: 1:CAS:528:DyaL3MXls1Giu7c%3
  • Brock, T.D., Madigan, M.T., Martinko, J.M., Parker, J., (1994) Biology of microorganisms, , Prentice, New Jerse
  • Chai, B., Wu, Y., Liu, P., Gao, M., Isolation and phosphate-solubilizing ability of a fungus, Penicillium sp. from soil of an alum mine (2011) J Basic Microb, 51, pp. 5-14. , COI: 1:CAS:528:DC%2BC3MXksFSnsbg%3
  • Della Mónica, I.F., Stefanoni Rubio, P.J., Cina, R.P., Recchi, M., Godeas, A.M., Scervino, J.M., Effects of the phosphate-solubilizing fungus Talaromyces flavus on the development and efficiency of the Gigaspora rosea-Triticum aestivum symbiosis (2014) Symbiosis, 64, pp. 25-32
  • Gerretsen, F.C., The influence of microorganisms on the phosphorus uptake by plant (1948) Plant Soil, 1, pp. 51-81. , COI: 1:CAS:528:DyaH1cXhvFKgtA%3D%3
  • Guimarães, L.H.S., Terenzi, H.S., Jorge, J.A., Leone, F.A., Polizeli, M.L.T.M., Characterization and properties of acid phosphatases with phytase activity produced by Aspergillus caespitosus (2004) Biotechnol Appl Bioc, 40, pp. 201-207
  • Gyaneshwar, G., Kumar, N., Parekh, L.J., Effect of buffering on the phosphate-solubilizing ability of microorganisms P (1998) J Microbiol Biotechnol, 14, pp. 669-673. , COI: 1:CAS:528:DyaK1MXmtVygsg%3D%3
  • Haas, H., Redl, B., Leitner, E., Stöffler, G., Penicillium chrysogenum extracellular acid phosphatase: purification and biochemical characterization (1991) Biochim Biophys Acta, 1074, pp. 392-397. , PID: 1909579, COI: 1:CAS:528:DyaK3MXmtVWksb0%3
  • Hidayat, B.J., Eriksen, N.T., Wiebe, M.G., Acid phosphatase production by Aspergillus niger N402A in continuous flow culture (2006) FEMS Microbiol Lett, 254, pp. 324-331. , PID: 16445763, COI: 1:CAS:528:DC%2BD28XhsFWrs70%3
  • Illmer, P., Schinner, F., Solubilization of inorganic phosphates by microorganisms isolated from forest soils (1992) Soil Biol Biochem, 24, pp. 389-395
  • Johnson, W.C., Lindsey, A.J., An improved universal buffer (1939) Analyst, 64, pp. 490-492. , COI: 1:CAS:528:DyaA1MXkslCksg%3D%3
  • Khan, M.S., Zaidi, A., Ahemad, M., Oves, M., Wani, P.A., Plant growth promotion by phosphate solubilizing fungi- current perspective (2010) Arch Agro Soil Sci, 56, pp. 73-98. , COI: 1:CAS:528:DC%2BD1MXhsVyju7j
  • Kucey, R.M.N., Janzen, H.H., Leggett, M.E., Microbially mediated increases in plant-available phosphorus (1989) Adv Agron, 42, pp. 199-228. , COI: 1:CAS:528:DyaL1MXlsFaltr4%3
  • Glenn, C.R., Garrison, R.E., Phosphorites (2003) Encyclopedia of sediments and sedimentary rocks: Encyclopedia of Earth Sciences Series, pp. 519-526. , Middleton GV, (ed), Kluwer Academic Publishers, Dordrech
  • Nahas, E., Microrganismos do solo produtores de fosfatases em diferentes sistemas agrícolas (2002) Bragantia, 61, pp. 267-275. , COI: 1:CAS:528:DC%2BD3sXhtVWjsLr
  • Nahas, E., Rodriguez-Barrueco, C., Phosphate solubilizing microorganisms: Effect of carbon, nitrogen and phosphorus sources (2007) Velazquez E, pp. 111-115. , First international meeting on microbial phosphate solubilization, Dordrech
  • Nahas, E., Centurion, J.F., Assis, L.C., Microganismos solubilizadores de fosfato e produtores de fosfatases de vários solos (1994) R bras Ci Solo, 18, pp. 43-48. , COI: 1:CAS:528:DyaK2cXmtVCit7w%3
  • Nahas, E., Terenzi, H.F., Rossi, A., Effect of carbon source and pH on the production and secretion of acid phosphatase (EC 3.1.3.2) and alkaline phosphatase (EC 3.1.3.1) in Neurospora crassa (1982) J Gen Microbiol, 128, pp. 2017-2021. , COI: 1:CAS:528:DyaL3sXmvVGktQ%3D%3
  • Nautiyal, C.S., An efficient microbiological growth medium for screening phosphate solubilizing microorganisms (1999) FEMS Microbiol Lett, 170, pp. 265-270. , PID: 9919677, COI: 1:CAS:528:DyaK1cXotFWit7k%3
  • Pawar, V.C., Thaker, V.S., Acid phosphatase and invertase activities of Aspergillus niger (2009) Mycoscience, 50, pp. 323-330. , COI: 1:CAS:528:DC%2BD1MXhtFCjurr
  • Rodriguez, M.A., Hongos del suelo antagonistas de Sclerotinia sclerotiorum. Selección y estudio de potenciales agentes de biocontrol (2004) PhD thesis, , Universidad de Buenos Aires, Argentin
  • Scervino, J.M., Prieto Mesa, M., Della Mónica, I., Recchi, M., Sarmiento Moreno, N., Godeas, A., Soil fungal isolates produce different organic acid patterns involved in phosphates salts solubilization (2010) Biol Fert Soils, 46, pp. 755-763. , COI: 1:CAS:528:DC%2BC3cXpvVyru7o%3
  • Seshadri, S., Ignacimuthu, S., Lakshminarasimhan, C., Effect of nitrogen and carbon sources on the inorganic phosphate solubilization by different Aspergillus niger strains (2004) Chem Eng Commun, 191, pp. 1043-1052. , COI: 1:CAS:528:DC%2BD2cXktVCqtLk%3
  • Stosz, S.K., Fravel, D.R., Roberts, D.P., In vitro analysis of the role of glucose oxidase from Talaromyces flavus in biocontrol of the plant pathogen Verticillium dahliae (1996) Appl Environ Microb, 62, pp. 3183-3186. , COI: 1:CAS:528:DyaK28XlsFertbo%3
  • Straker, C.J., Mitchell, D.T., The activity and characterization of acid phosphatases in endomycorrhizal fungi of the Ericaceae (1986) New Phytol, 104, pp. 243-256. , COI: 1:CAS:528:DyaL2sXhsFSjtQ%3D%3
  • Vinopal, R.T., Romano, A.H., Carbohydrate synthesis and metabolism (2000) Encyclopedia of microbiology, pp. 647-668. , Lederberg J, (ed), 1, Academic, San Dieg
  • Wenzel, C.L., Ashford, A.E., Summerell, B.A., Phosphate-solubilizing bacteria associated with proteoid roots of seedlings of waratah [Telopea speciosissima (Sm.) R.Br.] (1994) New Phytol, 128, pp. 487-496
  • Yadav, J., Verma, J.P., Tiwari, K.N., Solubilization of tricalcium phosphate by fungus Aspergillus niger at different carbon source and salinity (2011) Trends Appl Sci Res, 6, pp. 606-613. , COI: 1:CAS:528:DC%2BC3MXntlaluro%3

Citas:

---------- APA ----------
Stefanoni Rubio, P.J., Godoy, M.S., Della Mónica, I.F., Pettinari, M.J., Godeas, A.M. & Scervino, J.M. (2016) . Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus. Current Microbiology, 72(1), 41-47.
http://dx.doi.org/10.1007/s00284-015-0914-7
---------- CHICAGO ----------
Stefanoni Rubio, P.J., Godoy, M.S., Della Mónica, I.F., Pettinari, M.J., Godeas, A.M., Scervino, J.M. "Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus" . Current Microbiology 72, no. 1 (2016) : 41-47.
http://dx.doi.org/10.1007/s00284-015-0914-7
---------- MLA ----------
Stefanoni Rubio, P.J., Godoy, M.S., Della Mónica, I.F., Pettinari, M.J., Godeas, A.M., Scervino, J.M. "Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus" . Current Microbiology, vol. 72, no. 1, 2016, pp. 41-47.
http://dx.doi.org/10.1007/s00284-015-0914-7
---------- VANCOUVER ----------
Stefanoni Rubio, P.J., Godoy, M.S., Della Mónica, I.F., Pettinari, M.J., Godeas, A.M., Scervino, J.M. Carbon and Nitrogen Sources Influence Tricalcium Phosphate Solubilization and Extracellular Phosphatase Activity by Talaromyces flavus. Curr. Microbiol. 2016;72(1):41-47.
http://dx.doi.org/10.1007/s00284-015-0914-7