Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Stressful conditions prevailing in hydrocarbon-contaminated sites influence the diversity, distribution, and activities of microorganisms. Oil bioremediation agents should develop special characteristics to cope with these environments like surfactant production and cellular affinity to hydrocarbons. Additionally, polyhydroxyalkanoate (PHA) accumulation was proven to improve tolerance to stressful conditions. Pseudomonas sp. KA-08 was isolated from a chronic oil-contaminated environment, it is highly tolerant to xylene, and it is able to accumulate PHA and to produce surfactant compounds that lower the water surface tension (ST) as well as bioemulsifiers. In this work, we studied the effect of the capability to accumulate PHAs on biosurfactant production and microbial attachment to hydrocarbons (MATH). Our results showed that PHA synthesis capability has a favorable effect in the production of compounds which affect the ST but not on the production of bioemulsifiers. On the other hand, PHA accumulation affects cellular affinity to xylene. MATH analysis showed that a PHA-negative mutant increased its affinity to xylene compared with the wild-type strain. This result was also observed in Pseudomonas putida GPp104 (a PHA- mutant), suggesting that this effect could be generalized to other Pseudomonas strains. © 2014 Springer Science+Business Media New York.

Registro:

Documento: Artículo
Título:Polyhydroxyalkanoate synthesis affects biosurfactant production and cell attachment to hydrocarbons in pseudomonas sp. KA-08
Autor:Di Martino, C.; Catone, M.V.; López, N.I.; Raiger Iustman, L.J.
Filiación:Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA Buenos Aires, Argentina
IQUIBICEN-CONICET, Buenos Aires, Argentina
Palabras clave:Bacterial Adhesion; DNA, Bacterial; Hydrocarbons; Molecular Sequence Data; Polyhydroxyalkanoates; Pseudomonas; Sequence Analysis, DNA; Soil Microbiology; Surface-Active Agents
Año:2014
Volumen:68
Número:6
Página de inicio:735
Página de fin:742
DOI: http://dx.doi.org/10.1007/s00284-014-0536-5
Título revista:Current Microbiology
Título revista abreviado:Curr. Microbiol.
ISSN:03438651
CODEN:CUMID
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03438651_v68_n6_p735_DiMartino

Referencias:

  • Ayub, N.D., Tribelli, P.M., López, N.I., Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation (2009) Extremophiles, 13, pp. 59-66. , 1:CAS:528:DC%2BD1cXhsFCgsL7N 10.1007/s00792-008-0197-z
  • Braunegg, G., Sonnleitner, B., Lafferty, R.M., A rapid gas chromatographic method for the determination of poly-β hydroxybutyric acid in microbial biomass (1978) Eur J Appl Microbiol, 6, pp. 29-37. , 1:CAS:528:DyaE1MXosFWruw%3D%3D 10.1007/BF00500854
  • Catone, M.V., (2013) Identificación y Análisis de Los Genes Asociados Al Metabolismo de Polihidroxialcanoatos en Pseudomonas Extremaustralis. Disertation, , PhD Thesis, Universidad de Buenos Aires, Buenos Aires
  • Chang, W.N., Liu, C.W., Liu, H.S., Hydrophobic cell surface and bioflocculation behavior of Rhodococcus erythropolis (2009) Process Biochem, 44, pp. 955-962. , 1:CAS:528:DC%2BD1MXoslars78%3D 10.1016/j.procbio.2009.04.014
  • Choi, M.H., Xu, J., Gutierrez, M., Yoo, T., Cho, Y.H., Yoon, S.C., Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: Comparative 13C NMR analysis of the products in wild-type and mutants (2011) J Biotechnol, 151, pp. 130-142. , 10.1016/j.jbiotec.2010.11.002
  • Cooper, D.G., Goldenberg, B.G., Surface active agents of two Bacillus species (1987) Appl Environ Microb, 53, pp. 224-229. , 1:CAS:528:DyaL2sXhtlCrtr8%3D
  • Dastgheib, S.M.M., Amoozegar, M.A., Elahi, E., Asad, S., Banat, I.M., Bioemulsifier production by a halothermophilic Bacillus strain with potential applications in microbially enhanced oil recovery (2008) Biotechnol Lett, 30, pp. 263-270. , 1:CAS:528:DC%2BD2sXhsVKrtrrK 10.1007/s10529-007-9530-3
  • De Carvalho, C., Wick, L.Y., Heipieper, H.J., Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons (2009) Appl Microbiol Biotechnol, 82, pp. 311-320. , 1:CAS:528:DC%2BD1MXhtlOqu78%3D 10.1007/s00253-008-1809-3
  • De Eugenio, L.I., Galán, B., Escapa, I.F., Maestro, B., Sanz, J.M., García, J.L., Prieto, M.A., The PhaD regulator controls the simultaneous expression of the pha genes involved in polyhydroxyalkanoate metabolism and turnover in Pseudomonas putida KT2442 (2010) Environ Microbiol, 12, pp. 1591-1603. , 10.1111/j.1462-2920.2009.02061.x
  • Di Martino, C., López, N.I., Raiger Iustman, L.J., Isolation and characterization of benzene, toluene and xylene degrading Pseudomonas sp. Selected as candidates for bioremediation (2012) Int Biodeter Biodegr, 67, pp. 15-20. , 10.1016/j.ibiod.2011.11.004
  • Fracchia, L., Cavallo, M., Martinotti, M.G., Banat, I.M., Biosurfactants and bioemulsifiers biomedical and related applications-present status and future potentials (2012) Biomedical Science, Engineering and Technology, pp. 325-370. , D.N. Ghista (eds) Intech Karnal
  • Frankling, F.C.H., Bagdasarian, M., Bagdasarian, M.M., Timmis, K.N., Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway (1981) Biochemistry, 78, pp. 7458-7462
  • Gautam, K.K., Tyagi, V.K., Microbial surfactants: A review (2006) J Oleo Sci, 55, pp. 155-166. , 1:CAS:528:DC%2BD28XjtVahur8%3D 10.5650/jos.55.155
  • Hoang, T.T., Karkhoff-Schweizer, R.A.R., Kutchma, A.J., Schweizer, H.P., A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: Application for isolation of unmarked Pseudomonas aeruginosa mutants (1998) Gene, 212, pp. 77-86. , 1:CAS:528:DyaK1cXjvFSgu7Y%3D 10.1016/S0378-1119(98)00130-9
  • Huisman, G.W., Wonink, E., Meima, R., Kazemier, B., Terpstra, P., Metabolism of poly(3-hydroxialkanoate) (PHAs) by Pseudomonas oleovorans: Identification and sequences of genes and function of the encoded protein in the synthesis and degradation of PHA (1991) J Biol Chem, 266, pp. 2191-2198. , 1:CAS:528:DyaK3MXmt1Cqs7k%3D
  • Knoll, M., Hamm, T.M., Wagner, F., Martinez, V., Pleiss, J., The PHA depolymerase engineering database: A systematic analysis tool for the diverse family of polyhydroxyalkanoate (PHA) depolymerases (2009) BMC Bioinform, 10, p. 89. , 10.1186/1471-2105-10-89
  • Lageveen, R.G., Huisman, G.W., Preusting, H., Ketelaar, P., Eggink, G., Formation of polyesters by Pseudomonas oleovorans: Effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates (1988) Appl Environ Microb, 54, pp. 2924-2932. , 1:CAS:528:DyaL1MXptFOqtQ%3D%3D
  • Lang, S., Biological amphiphiles (microbial biosurfactants) (2002) Curr Opin Colloid Interface Sci, 7, pp. 12-20. , 1:CAS:528:DC%2BD38XjslOgu74%3D 10.1016/S1359-0294(02)00007-9
  • Link, A.J., Phillips, D., Church, G.M., Methods for generating precise deletions and insertions in genome of wild type E. Coli: Application to open reading frame characterization (1997) J Bacteriol, 179, pp. 6228-6237. , 1:CAS:528:DyaK2sXmslOmtr8%3D
  • López, N.I., Floccari, M.E., Garcia, A.F., Steinbüchel, A., Mendez, B.S., Effect of poly-3-hydroxybutyrate content on the starvation survival of bacteria in natural waters (1995) FEMS Microbiol Ecol, 16, pp. 95-101. , 10.1016/0168-6496(94)00073-6
  • Nitschke, M., Costa, S., Contiero, J., Rhamnolipids and PHAs: Recent reports on Pseudomonas-derived molecules of increasing industrial interest (2011) Process Biochem, 46, pp. 621-630. , 1:CAS:528:DC%2BC3MXhvFegs7k%3D 10.1016/j.procbio.2010.12.012
  • Ostle, A., Holt, J.G., Nile blue A as a fluorescent stain for poly-hydroxybutyrate (1982) Appl Environ Microb, 44, pp. 238-241. , 1:STN:280:DyaL3s%2FitFamuw%3D%3D
  • Pantazaki, A.A., Papaneophytou, C.P., Lambropoulou, D.A., Simultaneous polyhydroxyalkanoates and rhamnolipids production by Thermus thermophilus HB8 (2011) AMB Express, 1, p. 17. , 10.1186/2191-0855-1-17
  • Pham, T., Webb, J., Rehm, B., The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation (2004) Microbiology, 150, pp. 3405-3413. , 1:CAS:528:DC%2BD2cXptVyjtLw%3D 10.1099/mic.0.27357-0
  • Prieto, M.A., Buhler, B., Jung, K., Witholt, B., Kessler, B., PhaF, a polyhydroxyalkanoate-granule-associated protein of Pseudomonas oleovorans GPo1 involved in the regulatory expression system for pha genes (1999) J Bacteriol, 181, pp. 858-868. , 1:CAS:528:DyaK1MXhtVGju70%3D
  • Rehm, B.H.A., Mitsky, T.A., Steinbuchel, A., Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by Pseudomonads: Establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli (2001) Appl Environ Microb, 64, pp. 3102-3109. , 10.1128/AEM.67.7.3102-3109.2001
  • Rehm, B.H.A., Polyester synthases: Natural catalysts for plastics (2003) Biochem J, 376, pp. 15-33. , 1:CAS:528:DC%2BD3sXovVajs7c%3D 10.1042/BJ20031254
  • Robert, M., Mercadè, M.E., Bosch, M.P., Parra, J.L., Espuny, M.J., Manresa, M.A., Guinea, J., Effect of the carbon source on biosurfactant production in Pseudomonas aeruginosa 44T1 (1989) Biotechnol Lett, 12, pp. 871-874. , 10.1007/BF01026843
  • Rosenberg, M., Gutnick, D., Rosenberg, E., Adherence of bacteria to hydrocarbons: A simple method for measuring cell-surface hydrophobicity (1980) FEMS Microbiol Lett, 9, pp. 29-33. , 1:CAS:528:DyaL3MXht1eqsg%3D%3D 10.1111/j.1574-6968.1980.tb05599.x
  • Ruiz, J.A., López, N.I., Méndez, B.S., RpoS gene expression in carbon starved cultures of the polyhydroxyalkanoate accumulating species Pseudomonas oleovorans (2004) Curr Microbiol, 48, pp. 396-400. , 1:CAS:528:DC%2BD2cXkvVyhtrY%3D 10.1007/s00284-003-4183-5
  • Segura, A., Duque, E., Mosqueda, G., Ramos, J.L., Junker, F., Multiple responses of gram-negative bacteria to organic solvents (1999) Environ Microbiol, 1, pp. 191-198. , 1:CAS:528:DyaK1MXkt1ertrY%3D 10.1046/j.1462-2920.1999.00033.x
  • Siegmund, I., Wagner, F., New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar (1991) Biotechnol Tech, 5, pp. 265-268. , 1:CAS:528:DyaK38XlsV2rtQ%3D%3D 10.1007/BF02438660
  • Simon, R., Priefer, U., Pühler, A., A broad host range mobilization system for in vivo genetic engineering: Transposon mutagenesis in gram negative bacteria (1983) Nat Biotechnol, 1, pp. 784-791. , 1:CAS:528:DyaL2cXotVCqsg%3D%3D 10.1038/nbt1183-784
  • Soberón-Chávez, G., Lépine, F., Déziel, E., Production of rhamnolipids by Pseudomonas aeruginosa (2005) Appl Microbiol Biotechnol, 68, pp. 718-725. , 10.1007/s00253-005-0150-3
  • Timm, A., Steinbuchel, A., Cloning and molecular analysis of the poly(3-hydroxyalkanoic acid) gene locus of Pseudomonas aeruginosa PA01 (1992) Eur J Biochem, 209, pp. 15-30. , 1:CAS:528:DyaK3sXks1Cgsrc%3D 10.1111/j.1432-1033.1992.tb17256.x
  • Tribelli, P.M., López, N.I., Poly(3-hydroxybutyrate) influences biofilm formation and motility in the Antarctic novel species Pseudomonas extremaustralis under cold conditions (2011) Extremophiles, 15, pp. 541-547. , 1:CAS:528:DC%2BC3MXhtVKisbnE 10.1007/s00792-011-0384-1
  • Tribelli, P.M., Di Martino, C., López, N.I., Raiger Iustman, L.J., Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis (2012) Biodegradation, 23, pp. 645-651. , 1:CAS:528:DC%2BC38XhtFGlt77F 10.1007/s10532-012-9540-2
  • Vogel, H., Bonner, D., Acetylornithinase of Escherichia coli: Partial purification and some properties (1956) J Biol Chem, 218, pp. 97-106. , 1:CAS:528:DyaG28Xjt1OhtQ%3D%3D
  • Youssef, N.H., Duncan, K.E., McInerney, M.J., Importance of 3-hydroxy fatty acid composition of lipopeptides for biosurfactant activity (2005) Appl Environ Microbiol, 71, pp. 7690-7695. , 1:CAS:528:DC%2BD2MXhtlehtL3E 10.1128/AEM.71.12.7690-7695.2005

Citas:

---------- APA ----------
Di Martino, C., Catone, M.V., López, N.I. & Raiger Iustman, L.J. (2014) . Polyhydroxyalkanoate synthesis affects biosurfactant production and cell attachment to hydrocarbons in pseudomonas sp. KA-08. Current Microbiology, 68(6), 735-742.
http://dx.doi.org/10.1007/s00284-014-0536-5
---------- CHICAGO ----------
Di Martino, C., Catone, M.V., López, N.I., Raiger Iustman, L.J. "Polyhydroxyalkanoate synthesis affects biosurfactant production and cell attachment to hydrocarbons in pseudomonas sp. KA-08" . Current Microbiology 68, no. 6 (2014) : 735-742.
http://dx.doi.org/10.1007/s00284-014-0536-5
---------- MLA ----------
Di Martino, C., Catone, M.V., López, N.I., Raiger Iustman, L.J. "Polyhydroxyalkanoate synthesis affects biosurfactant production and cell attachment to hydrocarbons in pseudomonas sp. KA-08" . Current Microbiology, vol. 68, no. 6, 2014, pp. 735-742.
http://dx.doi.org/10.1007/s00284-014-0536-5
---------- VANCOUVER ----------
Di Martino, C., Catone, M.V., López, N.I., Raiger Iustman, L.J. Polyhydroxyalkanoate synthesis affects biosurfactant production and cell attachment to hydrocarbons in pseudomonas sp. KA-08. Curr. Microbiol. 2014;68(6):735-742.
http://dx.doi.org/10.1007/s00284-014-0536-5