Artículo

Boari, S.; Amador, A. "Neural coding of sound envelope structure in songbirds" (2018) Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. 204(3):285-294
El editor solo permite decargar el artículo en su versión post-print desde el repositorio. Por favor, si usted posee dicha versión, enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Songbirds are a well-established animal model to study the neural basis of learning, perception and production of complex vocalizations. In this system, telencephalic neurons in HVC present a state-dependent, highly selective response to auditory presentations of the bird’s own song (BOS). This property provides an opportunity to study the neural code behind a complex motor behavior. In this work, we explore whether changes in the temporal structure of the sound envelope can drive changes in the neural responses of highly selective HVC units. We generated an envelope-modified BOS (MOD) by reversing each syllable’s envelope but leaving the overall temporal structure of syllable spectra unchanged, which resulted in a subtle modification for each song syllable. We conducted in vivo electrophysiological recordings of HVC neurons in anaesthetized zebra finches (Taeniopygia guttata). Units analyzed presented a high BOS selectivity and lower response to MOD, but preserved the profile response shape. These results show that the temporal evolution of the sound envelope is being sensed by the avian song system and suggest that the biomechanical properties of the vocal apparatus could play a role in enhancing subtle sound differences. © 2017, Springer-Verlag GmbH Germany, part of Springer Nature.

Registro:

Documento: Artículo
Título:Neural coding of sound envelope structure in songbirds
Autor:Boari, S.; Amador, A.
Filiación:Department of Physics, FCEN, University of Buenos Aires and IFIBA, CONICET, Intendente Guiraldes 2160, Pabellon 1, Ciudad Universitaria, Buenos Aires, 1428, Argentina
Palabras clave:Auditory processing; Birdsong; Electrophysiology; Neural coding; Zebra finch
Año:2018
Volumen:204
Número:3
Página de inicio:285
Página de fin:294
DOI: http://dx.doi.org/10.1007/s00359-017-1238-9
Título revista:Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology
Título revista abreviado:J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol.
ISSN:03407594
CODEN:JCPAD
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03407594_v204_n3_p285_Boari

Referencias:

  • Alonso, R., Goller, F., Mindlin, G.B., Motor control of sound frequency in birdsong involves the interaction between air sac pressure and labial tension (2014) Phys Rev E, 89 (3), p. 32706
  • Amador, A., Margoliash, D., A mechanism for frequency modulation in songbirds shared with humans (2013) J Neurosci, 33 (27), pp. 11136-11144. , COI: 1:CAS:528:DC%2BC3sXhtFWjtrbK, PID: 23825417
  • Amador, A., Sanz Perl, Y., Mindlin, G.B., Margoliash, D., Elemental gesture dynamics are encoded by song premotor cortical neurons (2013) Nature, 495, pp. 59-64. , COI: 1:CAS:528:DC%2BC3sXjsFeqtrs%3D, PID: 23446354
  • Boari, S., Perl, Y.S., Amador, A., Margoliash, D., Mindlin, G.B., Automatic reconstruction of physiological gestures used in a model of birdsong production (2015) J Neurophysiol, 114 (5), pp. 2912-2922. , COI: 1:CAS:528:DC%2BC28XhsVClsrrP, PID: 26378204
  • Boersma, P., Van Heuven, V., Speak and unSpeak with PRAAT (2001) Glot International, 5 (9-10), pp. 341-347
  • Brainard, M.S., Doupe, A.J., Interruption of a basal ganglia–forebrain circuit prevents plasticity of learned vocalizations (2000) Nature, 404 (6779), pp. 762-766. , COI: 1:CAS:528:DC%2BD3cXjtVamtL8%3D, PID: 10783889
  • Bregman, M.R., Patel, A.D., Gentner, T.Q., Songbirds use spectral shape, not pitch, for sound pattern recognition (2016) Proc Natl Acad Sci USA, 113 (6), pp. 1666-1671. , COI: 1:CAS:528:DC%2BC28Xhtlamtbs%3D, PID: 26811447
  • Caclin, A., McAdams, S., Smith, B.K., Winsberg, S., Acoustic correlates of timbre space dimensions: a confirmatory study using synthetic tones (2005) J Acoust Soc Am, 118 (1), pp. 471-482. , PID: 16119366
  • Dave, A.S., Margoliash, D., Song replay during sleep and computational rules for sensorimotor vocal learning (2000) Science, 290 (5492), pp. 812-816. , COI: 1:CAS:528:DC%2BD3cXns1artr8%3D, PID: 11052946
  • Dooling, R.J., Prior, N.H., Do we hear what birds hear in birdsong? (2017) Anim Behav, 124, pp. 283-289
  • Dooling, R.J., Lohr, B., Dent, M.L., Hearing in birds and reptiles (2000) Comparative hearing: birds and reptiles, pp. 308-359. , Dooling RJ, Fay RR, (eds), Springer-Verlag, New York
  • Dooling, R.J., Leek, M.R., Gleich, O., Dent, M.L., Auditory temporal resolution in birds: discrimination of harmonic complexes (2002) J Acoust Soc Am, 112 (2), pp. 748-759. , PID: 12186054
  • Doupe, A.J., Konishi, M., Song-selective auditory circuits in the vocal control system of the zebra finch (1991) Proc Natl Acad Sci USA, 88 (24), pp. 11339-11343. , COI: 1:STN:280:DyaK387gsl2ntw%3D%3D, PID: 1763048
  • Doupe, A.J., Kuhl, P.K., Birdsong and human speech: common themes and mechanisms (1999) Annu Rev Neurosci, 22, pp. 567-631. , COI: 1:CAS:528:DyaK1MXhvFems7c%3D, PID: 10202549
  • Drennan, W.R., Rubinstein, J.T., Music perception in cochlear implant users and its relationship with psychophysical capabilities (2008) J Rehabil Res Dev, 45 (5), p. 779. , PID: 18816426
  • Feher, O., Wang, H.B., Saar, S., Mitra, P.P., Tchernichovski, O., De novo establishment of wild-type song culture in the zebra finch (2009) Nature, 459 (7246), pp. U564-U594
  • Franz, M., Goller, F., Respiratory units of motor production and song imitation in the zebra finch (2002) ‎Dev Neurobiol, 51 (2), pp. 129-141
  • Grace, J.A., Amin, N., Singh, N.C., Theunissen, F.E., Selectivity for conspecific song in the zebra finch auditory forebrain (2003) J Neurophysiol, 89 (1), pp. 472-487. , PID: 12522195
  • Iverson, P., Krumhansl, C.L., Isolating the dynamic attributes of musical timbre (1993) J Acoust Soc Am, 94 (5), pp. 2595-2603. , COI: 1:STN:280:DyaK2c%2FpsFOktQ%3D%3D, PID: 8270737
  • Kong, Y.-Y., Mullangi, A., Marozeau, J., Epstein, M., Temporal and spectral cues for musical timbre perception in electric hearing (2011) J Speech Lang Hear Res, 54 (3), pp. 981-994. , PID: 21060140
  • Krimphoff, J., McAdams, S., Winsberg, S., Caractérisation du timbre des sons complexes. II. Analyses acoustiques et quantification psychophysique (1994) Le Journal de Physique IV, 4 (C5), pp. C625-C628
  • Lewicki, M.S., Intracellular characterization of song-specific neurons in the zebra finch auditory forebrain (1996) J Neurosci, 16 (18), pp. 5854-5863. , COI: 1:CAS:528:DyaK28XlsFOhsro%3D
  • Margoliash, D., Acoustic parameters underlying the responses of song-specific neurons in the white-crowned sparrow (1983) J Neurosci, 3 (5), pp. 1039-1057. , COI: 1:STN:280:DyaL3s7ovVeitg%3D%3D, PID: 6842281
  • Margoliash, D., Preference for autogenous song by auditory neurons in a song system nucleus of the white-crowned sparrow (1986) J Neurosci, 6 (6), pp. 1643-1661. , COI: 1:STN:280:DyaL283is1GjtQ%3D%3D, PID: 3712002
  • Margoliash, D., Fortune, E.S., Temporal and harmonic combination-sensitive neurons in the zebra finch’s HVc (1992) J Neurosci, 12 (11), pp. 4309-4326. , COI: 1:STN:280:DyaK3s%2FlslOrtA%3D%3D, PID: 1432096
  • Margoliash, D., Fortune, E.S., Sutter, M.L., Yu, A.C., Wrenhardin, B.D., Dave, A., Distributed representation in the song system of Oscines: evolutionary implications and functional consequences (1994) Brain Behav Evol, 44 (4-5), pp. 247-264. , COI: 1:STN:280:DyaK2M7ksVGjsg%3D%3D, PID: 7842284
  • McAdams, S., Winsberg, S., Donnadieu, S., De Soete, G., Krimphoff, J., Perceptual scaling of synthesized musical timbres: common dimensions, specificities, and latent subject classes (1995) Psychol Res, 58 (3), pp. 177-192. , COI: 1:STN:280:DyaK287jt1aitg%3D%3D, PID: 8570786
  • Mindlin, G.B., Gardner, T.J., Goller, F., Suthers, R., Experimental support for a model of birdsong production (2003) Phys Rev E, 68 (4), p. 41908. , COI: 1:STN:280:DC%2BD3sngslSntA%3D%3D
  • Mooney, R., Different subthreshold mechanisms underlie song selectivity in identified HVc neurons of the zebra finch (2000) J Neurosci, 20 (14), pp. 5420-5436. , COI: 1:CAS:528:DC%2BD3cXlt1Wiu7w%3D, PID: 10884326
  • Perl, Y.S., Arneodo, E.M., Amador, A., Goller, F., Mindlin, G.B., Reconstruction of physiological instructions from zebra finch song (2011) Phys Rev E, 84 (5), p. 51909
  • Prather, J.F., Peters, S., Nowicki, S., Mooney, R., Precise auditory-vocal mirroring in neurons for learned vocal communication (2008) Nature, 451 (7176), pp. U302-U305
  • Pressnitzer, D., Bestel, J., Fraysse, B., Music to electric ears: pitch and timbre perception by cochlear implant patients (2005) Ann NY Acad Sci, 1060 (1), pp. 343-345. , PID: 16597784
  • Quiroga, R.Q., Nadasdy, Z., Ben-Shaul, Y., Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering (2004) Neural Comput, 16 (8), pp. 1661-1687. , PID: 15228749
  • Riede, T., Goller, F., Peripheral mechanisms for vocal production in birds—differences and similarities to human speech and singing (2010) Brain Lang, 115 (1), pp. 69-80. , PID: 20153887
  • Riede, T., Fisher, J.H., Goller, F., Sexual dimorphism of the zebra finch syrinx indicates adaptation for high fundamental frequencies in males (2010) PLoS One, 5 (6). , PID: 20614010
  • Ritschard, M., Brumm, H., Effects of vocal learning, phonetics and inheritance on song amplitude in zebra finches (2011) Anim Behav, 82 (6), pp. 1415-1422
  • Srivastava, K.H., Elemans, C.P., Sober, S.J., Multifunctional and context-dependent control of vocal acoustics by individual muscles (2015) J Neurosci, 35 (42), pp. 14183-14194. , COI: 1:CAS:528:DC%2BC28Xjt1Ghurg%3D, PID: 26490859
  • Theunissen, F.E., Doupe, A.J., Temporal and spectral sensitivity of complex auditory neurons in the nucleus HVc of male zebra finches (1998) J Neurosci, 18 (10), pp. 3786-3802. , COI: 1:CAS:528:DyaK1cXjtVWrtrk%3D, PID: 9570809
  • Theunissen, F.E., Sen, K., Doupe, A.J., Spectral–temporal receptive fields of nonlinear auditory neurons obtained using natural sounds (2000) J Neurosci, 20 (6), pp. 2315-2331. , COI: 1:CAS:528:DC%2BD3cXhvVahu74%3D, PID: 10704507
  • Theunissen, F.E., Amin, N., Shaevitz, S.S., Woolley, S.M.N., Fremouw, T., Hauber, M.E., Song selectivity in the song system and in the auditory forebrain (2004) Ann Ny Acad Sci, 1016, pp. 222-245. , PID: 15313778
  • Thorpe, W.H., (1961) Bird-song: the biology of vocal communication and expression in birds, , Cambridge University Press, Oxford
  • Town, S.M., Bizley, J.K., Neural and behavioral investigations into timbre perception (2013) Front Syst Neurosci, p. 7
  • Volman, S., Quantitative assessment of song-selectivity in the zebra finch “high vocal center (1996) J Comp Physiol A, 178 (6), pp. 849-862. , COI: 1:STN:280:DyaK283hsVKktg%3D%3D, PID: 8667295

Citas:

---------- APA ----------
Boari, S. & Amador, A. (2018) . Neural coding of sound envelope structure in songbirds. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 204(3), 285-294.
http://dx.doi.org/10.1007/s00359-017-1238-9
---------- CHICAGO ----------
Boari, S., Amador, A. "Neural coding of sound envelope structure in songbirds" . Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 204, no. 3 (2018) : 285-294.
http://dx.doi.org/10.1007/s00359-017-1238-9
---------- MLA ----------
Boari, S., Amador, A. "Neural coding of sound envelope structure in songbirds" . Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, vol. 204, no. 3, 2018, pp. 285-294.
http://dx.doi.org/10.1007/s00359-017-1238-9
---------- VANCOUVER ----------
Boari, S., Amador, A. Neural coding of sound envelope structure in songbirds. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 2018;204(3):285-294.
http://dx.doi.org/10.1007/s00359-017-1238-9