Artículo

Calviño, M.A.; Szczupak, L. "Spatial-specific action of serotonin within the leech midbody ganglion" (2008) Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology. 194(6):523-531
La versión final de este artículo es de uso interno. El editor solo permite incluir en el repositorio el artículo en su versión post-print. Por favor, si usted la posee enviela a
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

Serotonin is a conspicuous neuromodulator in the nervous system of many vertebrates and invertebrates. In previous experiments performed in the leech nervous system, we compared the effect of the amine released from endogenous sources [using selective serotonin reuptake inhibitors (SSRIs), e.g. fluoxetine] with that of bath-applied serotonin. The results suggested that the amine does not reach all its targets in a uniform way, but produces the activation of an interneuronal pathway that generated specific synaptic responses on different neurons. Taking into account that the release of the amine is often regulated at the presynaptic level, we have investigated whether autoreceptor antagonists mimic the SSRIs effect. We found that methiothepin (100 μM) produced similar effects than fluoxetine. To further test the hypothesis that endogenous serotonin produce its effect by acting locally at specific sites, we analyzed the effect of iontophoretic applications of serotonin. We found a site in the neuropil of the leech ganglia where serotonin application mimicked the effect of the SSRIs and the 5-HT antagonist. The results further support the view that the effect of serotonin exhibits a spatial specificity that can be relevant to understand its modulatory actions. © 2008 Springer-Verlag.

Registro:

Documento: Artículo
Título:Spatial-specific action of serotonin within the leech midbody ganglion
Autor:Calviño, M.A.; Szczupak, L.
Filiación:Dto. de Fisiología, Biología Molecular Y Celular, Facultad de Ciencias Exactas Y Naturales, Pabellón II, 1428 Buenos Aires, Argentina
LFBM, Ciudad Universitaria, Pabellón II, 1428 Buenos Aires, Argentina
Palabras clave:5-HT antagonist; Autoreceptor; Interneuronal pathway; Methiothepin; Neuromodulation; cyproheptadine; fluoxetine; metitepine; serotonin; serotonin antagonist; serotonin uptake inhibitor; animal; article; drug effect; electrophysiology; excitatory postsynaptic potential; ganglion; histology; iontophoresis; leech; motoneuron; nerve tract; neuropil; physiology; statistical analysis; Animals; Cyproheptadine; Data Interpretation, Statistical; Electrophysiology; Excitatory Postsynaptic Potentials; Fluoxetine; Ganglia, Invertebrate; Iontophoresis; Leeches; Methiothepin; Motor Neurons; Neural Pathways; Neuropil; Serotonin; Serotonin Antagonists; Serotonin Uptake Inhibitors
Año:2008
Volumen:194
Número:6
Página de inicio:523
Página de fin:531
DOI: http://dx.doi.org/10.1007/s00359-008-0326-2
Título revista:Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology
Título revista abreviado:J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol.
ISSN:03407594
CODEN:JCPAD
CAS:cyproheptadine, 129-03-3, 969-33-5; fluoxetine, 54910-89-3, 56296-78-7, 59333-67-4; metitepine, 20229-30-5; serotonin, 50-67-9; Cyproheptadine, 129-03-3; Fluoxetine, 54910-89-3; Methiothepin, 20229-30-5; Serotonin Antagonists; Serotonin Uptake Inhibitors; Serotonin, 50-67-9
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03407594_v194_n6_p523_Calvino

Referencias:

  • Acosta-Urquidi, J., Sahley, C.L., Kleinhaus, A.L., Serotonin differentially modulates two K+ currents in the Retzius cell of the leech (1989) J Exp Biol, 145, pp. 403-417
  • Angstadt, J.D., Friesen, W.O., Modulation of swimming behavior in the medicinal leech. I. Effects of serotonin on the electrical properties of swim-gating cell 204 (1993) J Comp Physiol a, 172, pp. 223-234
  • Barnes, N.M., Sharp, T., A review of central 5-HT receptors and their function (1999) Neuropharmacology, 38, pp. 1083-1152
  • Bruns, D., Jahn, R., Real-time measurement of transmitter release from single synaptic vesicles (1995) Nature, 377, pp. 62-65
  • Burgin, A.M., Szczupak, L., Network interactions among sensory neurons in the leech (2003) J Comp Physiol a, 189, pp. 59-67
  • Burrell, B.D., Sahley, C.L., Muller, K.J., Non-associative learning and serotonin induce similar bidirectional changes in excitability of a neuron critical for learning in the medicinal leech (2001) J Neurosci, 21, pp. 1401-1412
  • Calviño, M.A., Iscla, I.R., Szczupak, L., Selective serotonin reuptake inhibitors induce spontaneous interneuronal activity in the leech nervous system (2005) J Neurophysiol, 93, pp. 2644-2655
  • Catarsi, S., Garcia-Gil, M., Traina, G., Brunelli, M., Seasonal variation of serotonin content and nonassociative learning of swim induction in the leech Hirudo medicinalis (1990) J Comp Physiol a, 167, pp. 469-474
  • Cohen, J.E., Onyike, C.U., McElroy, V.L., Lin, A.H., Abrams, T.W., Pharmacological characterization of an adenylyl cyclase-coupled 5-HT receptor in Aplysia: Comparison with mammalian 5-HT receptors (2003) J Neurophysiol, 89, pp. 1440-1455
  • Crisp, K.M., Mesce, K.A., Beyond the central pattern generator: Amine modulation of decision-making neural pathways descending from the brain of the medicinal leech (2006) J Exp Biol, 209, pp. 1746-1756
  • De-Miguel, F.F., Trueta, C., Synaptic and extrasynaptic secretion of serotonin (2005) Cell Mol Neurobiol, 25, pp. 297-312
  • Diefenbach, T.J., Sloley, B.D., Goldberg, J.I., Neurite branch development of an identified serotonergic neuron from embryonic Helisoma: Evidence for autoregulation by serotonin (1995) Dev Biol, 167, pp. 282-293
  • Douglas, C.L., Baghdoyan, H.A., Lydic, R., M2 muscarinic autoreceptors modulate acetylcholine release in prefrontal cortex of C57BL/6J mouse (2001) J Pharmacol Exp Ther, 299, pp. 960-966
  • Harris-Warrick, R.M., Marder, E., Modulation of neural networks for behavior (1991) Annu Rev Neurosci, 14, pp. 39-57
  • Hashemzadeh-Gargari, H., Friesen, W.O., Modulation of swimming activity in the medicinal leech by serotonin and octopamine (1989) Comp Biochem Physiol, 94, pp. 295-302
  • Iscla, I., Arini, P.D., Szczupak, L., Differential channeling of sensory stimuli onto a motor neuron in the leech (1999) J Comp Physiol a, 184, pp. 233-241
  • Jacobs, B.L., Fornal, C.A., 5-HT and motor control: A hypothesis (1993) Trends Neurosci, 16, pp. 346-352
  • Jankowska, E., Spinal interneuronal systems: Identification, multifunctional character and reconfigurations in mammals (2001) J Physiol, 533, pp. 31-40
  • Kerkut, G.A., Walker, R.J., The action of acetylcholine, dopamine and 5-hydroxytryptamine on the spontaneous activity of the cells of Retzius of the leech, Hirudo medicinalis (1967) Br J Pharmacol Chemother, 30, pp. 644-654
  • Kristan Jr., W.B., Nusbaum, M.P., The dual role of serotonin in leech swimming (1982) J Physiol, 78, pp. 743-747. , (Paris)
  • Leake, L.D., Koubanakis, M., Central and peripheral 5-HT receptors in the leech (Hirudo medicinalis) redefined (1995) Gen Pharmacol, 26, pp. 1709-1717
  • Lent, C.M., Dickinson, M.H., Serotonin integrates the feeding behavior of the medicinal leech (1984) J Comp Physiol a, 154, pp. 457-471
  • Lent, C.M., Zundel, D., Freedman, E., Groome, J.R., Serotonin in the leech central nervous system: Anatomical correlates and behavioral effects (1991) J Comp Physiol a, 168, pp. 191-200
  • Lessmann, V., Dietzel, I.D., Development of serotonin-induced ion currents in identified embryonic Retzius cells from the medicinal leech (Hirudo medicinalis) (1991) J Neurosci, 11, pp. 800-809
  • McAddo, D.J., Coggeshall, R.E., Gas chromatographic-mass spectrometric analysis of biogenic amines in identified neurons and tissues of Hirudo medicinalis (1976) J Neurochem, 26, pp. 163-7
  • MacAgno, E.R., Number and distribution of neurons in leech segmental ganglia (1980) J Comp Neurol, 190, pp. 283-302
  • Mangan, P.S., Curran, G.A., Hurney, C.A., Friesen, W.O., Modulation of swimming behavior in the medicinal leech. III. Control of cellular properties in motor neurons by serotonin (1994) J Comp Physiol a, 175, pp. 709-722
  • Marin-Burgin, A., Szczupak, L., Processing of sensory signals by a non-spiking neuron in the leech (2000) J Comp Physiol a, 186, pp. 989-997
  • Marinesco, S., Wickremasinghe, N., Carew, T.J., Regulation of behavioral and synaptic plasticity by serotonin release within local modulatory fields in the CNS of Aplysia (2006) J Neurosci, 26, pp. 12682-12693
  • Mason, A., Leake, L.D., Morphology of leech retzius cells demonstrated by intracellular injection of horseradish peroxidase (1978) Comp Biochem Physiol, 61, pp. 213-216
  • Mercer, A.R., Emptage, N.J., Carew, T.J., Pharmacological dissociation of modulatory effects of serotonin in Aplysia sensory neurons (1991) Science, 254, pp. 1811-1813
  • Muller, K.J., Nicholls, J.G., Stent, G.S., (1981) Neurobiology of the Leech, , Cold Spring Harbor Laboratory Cold Spring Harbor
  • Nusbaum, M.P., Synaptic basis of swim initiation in the leech. III. Synaptic effects of serotonin-containing interneurones (cells 21 and 61) on swim CPG neurones (cells 18 and 208) (1986) J Exp Biol, 122, pp. 303-321
  • O'Gara, B.A., Illuzzi, F.A., Chung, M., Portnoy, A.D., Fraga, K., Frieman, V.B., Serotonin induces four pharmacologically separable contractile responses in the pharynx of the leech Hirudo medicinalis (1999) Gen Pharmacol, 32, pp. 669-681
  • Perrier, J.F., Hounsgaard, J., 5-HT2 receptors promote plateau potentials in turtle spinal motoneurons by facilitating an L-type calcium current (2003) J Neurophysiol, 89, pp. 954-959
  • Pineyro, G., Blier, P., Autoregulation of serotonin neurons: Role in antidepressant drug action (1999) Pharmacol Rev, 51, pp. 533-591
  • Roberts, C., Price, G.W., Jones, B.J., The role of 5-HT1B/1D receptors in the modulation of 5-hydroxytryptamine levels in the frontal cortex of the conscious guinea pig (1997) Eur J Pharmacol, 326, pp. 23-30
  • Sahley, C.L., What we have learned from the study of learning in the leech (1995) J Neurobiol, 27, pp. 434-445
  • Sanchez-Armass, S., Merz, D.C., Drapeau, P., Distinct receptors, second messengers and conductances underlying the dual responses to serotonin in an identified leech neurone (1991) J Exp Biol, 155, pp. 531-547
  • Sargent, P.B., Yau, K.W., Nicholls, J.G., Extrasynaptic receptors on cell bodies of neurons in central nervous system of the leech (1977) J Neurophysiol, 40, pp. 446-452
  • Schmidt, B.J., Jordan, L.M., The role of serotonin in reflex modulation and locomotor rhythm production in the mammalian spinal cord (2000) Brain Res Bull, 53, pp. 689-710
  • Sombati, S., Hoyle, G., Central nervous sensitization and dishabituation of reflex action in an insect by the neuromodulator octopamine (1984) J Neurobiol, 15, pp. 455-480
  • Sosa, M.A., Spitzer, N., Edwards, D.H., Baro, D.J., A crustacean serotonin receptor: Cloning and distribution in the thoracic ganglia of crayfish and freshwater prawn (2004) J Comp Neurol, 473, pp. 526-537
  • Spitzer, N., Antonsen, B.L., Edwards, D.H., Immunocytochemical mapping and quantification of expression of a putative type 1 serotonin receptor in the crayfish nervous system (2005) J Comp Neurol, 484, pp. 261-282
  • Stamford, J.A., Davidson, C., McLaughlin, D.P., Hopwood, S.E., Control of dorsal raphe 5-HT function by multiple 5-HT(1) autoreceptors: Parallel purposes or pointless plurality? (2000) Trends Neurosci, 23, pp. 459-465
  • Starke, K., Gothert, M., Kilbinger, H., Modulation of neurotransmitter release by presynaptic autoreceptors (1989) Physiol Rev, 69, pp. 864-989
  • Szczupak, L., Jordan, S., Kristan Jr., W.B., Segment-specific modulation of the electrophysiological activity of leech Retzius neurons by acetylcholine (1993) J Exp Biol, 183, pp. 115-135
  • Teshiba, T., Shamsian, A., Yashar, B., Yeh, S.R., Edwards, D.H., Krasne, F.B., Dual and opposing modulatory effects of serotonin on crayfish lateral giant escape command neurons (2001) J Neurosci, 21, pp. 4523-4529
  • Tierney, A.J., Structure and function of invertebrate 5-HT receptors: A review (2001) Comp Biochem Physiol a Mol Integr Physiol, 128, pp. 791-804
  • Wadepuhl, M., A morpho-and physiologically uncommon neuron in the leech CNS (1987) Naturwissenschaften, 74, p. 43
  • Wessel, R., Kristan Jr., W.B., Kleinfeld, D., Supralinear summation of synaptic inputs by an invertebrate neuron: Dendritic gain is mediated by an "inward rectifier" K(+) current (1999) J Neurosci, 19, pp. 5875-5888
  • Willard, A.L., Effects of serotonin on the generation of the motor program for swimming by the medicinal leech (1981) J Neurosci, 1, pp. 936-944
  • Wittenberg, G., Loer, C.M., Adamo, S.A., Kristan Jr., W.B., Segmental specialization of neuronal connectivity in the leech (1990) J Comp Physiol a, 167, pp. 453-459
  • Yuan, Q., Lin, F., Zheng, X., Sehgal, A., Serotonin modulates circadian entrainment in Drosophila (2005) Neuron, 47, pp. 115-127
  • Zar, J.H., (1984) Biostatistical Analysis, , 2nd edition Prentice-Hall Englewood Cliffs NJ

Citas:

---------- APA ----------
Calviño, M.A. & Szczupak, L. (2008) . Spatial-specific action of serotonin within the leech midbody ganglion. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 194(6), 523-531.
http://dx.doi.org/10.1007/s00359-008-0326-2
---------- CHICAGO ----------
Calviño, M.A., Szczupak, L. "Spatial-specific action of serotonin within the leech midbody ganglion" . Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology 194, no. 6 (2008) : 523-531.
http://dx.doi.org/10.1007/s00359-008-0326-2
---------- MLA ----------
Calviño, M.A., Szczupak, L. "Spatial-specific action of serotonin within the leech midbody ganglion" . Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, vol. 194, no. 6, 2008, pp. 523-531.
http://dx.doi.org/10.1007/s00359-008-0326-2
---------- VANCOUVER ----------
Calviño, M.A., Szczupak, L. Spatial-specific action of serotonin within the leech midbody ganglion. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 2008;194(6):523-531.
http://dx.doi.org/10.1007/s00359-008-0326-2