Artículo

Bermejo, E.; Sáenz, D.A.; Alberto, F.; Rosenstein, R.E.; Bari, S.E.; Lazzari, M.A. "Effect of nitroxyl on human platelets function" (2005) Thrombosis and Haemostasis. 94(3):578-584
La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

There is a growing body of evidence on the role of nitric oxide (NO) in human platelet physiology regulation. Recently, interest has developed in the functional role of an alternative redox form of NO, namely nitroxyl (HNO/NO-), because it is formed by a number of diverse biochemical reactions. The aim of the present study was to comparatively analyze the effect of HNO and NO on several functional parameters of human platelets. For this purpose, sodium trioxodinitrate (Angeli's salt, AS) and sodium nitroprusside (SNP) were used as HNO and NO releasers, respectively. Both AS and SNP significantly inhibited platelet aggregation and ATP release induced by different agonists and adrenaline. AS or SNP did not modify the expression of platelet glycoproteins (Ib, IIb-IIIa, Ia-IIa, IV), whereas they substantially decreased the levels of CD62P, CD63 and of PAC-I (a platelet activated glycoprotein IIb/IIIa epitope) after the stimulation with ADP. AS and SNP significantly increased cGMP accumulation in a IH-[1,2,4]oxadiazolo [4,3-a] quinoxalin-I-one (ODQ)-sensitive manner. However while L-cysteine reduced the effect of AS, it increased the effect of SNP on this parameter. Accordingly, a differential effect of L-cysteine was observed on the antiaggregatory effect of both compounds. In summary, these results indicate that HNO is an effective inhibitor of human platelet aggregation. © 2005 Schattauer GmbH, Stuttgart.

Registro:

Documento: Artículo
Título:Effect of nitroxyl on human platelets function
Autor:Bermejo, E.; Sáenz, D.A.; Alberto, F.; Rosenstein, R.E.; Bari, S.E.; Lazzari, M.A.
Filiación:Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 5oP, 1121 Buenos Aires, Argentina
Departamento de Hemostasia y Trombosis, IIHEMA, Academia Nacional de Medicina de Buenos Aires, Buenos Aires, Argentina
Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
Palabras clave:Nitric oxide; Nitroxyl; Platelet physiology; 1h 1,2,4 oxadiazolo[4,3 a]quinoxalin 1 one; adenosine triphosphate; adrenalin; alpha2 integrin; beta1 integrin; CD36 antigen; CD63 antigen; cyclic GMP; cysteine; fibrinogen receptor; glycoprotein Ib; nitric oxide; nitroprusside sodium; nitroxyl; PADGEM protein; reagent; trioxodinitrate sodium; unclassified drug; article; comparative study; controlled study; hematological parameters; human; human cell; normal human; priority journal; protein expression; thrombocyte aggregation inhibition; thrombocyte function; Adenosine Triphosphate; Antigens, CD; Blood Platelets; Cyclic GMP; Cysteine; Dose-Response Relationship, Drug; Drug Interactions; Humans; Nitric Oxide; Nitric Oxide Donors; Nitrites; Nitrogen Oxides; Nitroprusside; P-Selectin; Platelet Aggregation; Platelet Membrane Glycoproteins; Time Factors
Año:2005
Volumen:94
Número:3
Página de inicio:578
Página de fin:584
DOI: http://dx.doi.org/10.1160/TH05-01-0062
Título revista:Thrombosis and Haemostasis
Título revista abreviado:Thromb. Haemost.
ISSN:03406245
CODEN:THHAD
CAS:1h 1,2,4 oxadiazolo[4,3 a]quinoxalin 1 one, 41443-28-1; adenosine triphosphate, 15237-44-2, 56-65-5, 987-65-5; adrenalin, 51-43-4, 55-31-2, 6912-68-1; cyclic GMP, 7665-99-8; cysteine, 4371-52-2, 52-89-1, 52-90-4; nitric oxide, 10102-43-9; nitroprusside sodium, 14402-89-2, 15078-28-1; Adenosine Triphosphate, 56-65-5; Antigens, CD; Cyclic GMP, 7665-99-8; Cysteine, 52-90-4; lysosomal protein GP53; Nitric Oxide Donors; Nitric Oxide, 10102-43-9; Nitrites; Nitrogen Oxides; Nitroprusside, 15078-28-1; nitroxyl, 14332-28-6; oxyhyponitrite, 18550-55-5; P-Selectin; Platelet Membrane Glycoproteins
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03406245_v94_n3_p578_Bermejo

Referencias:

  • Mellion, B.T., Ignarro, L.J., Ohlstein, E.H., Evidence for the inhibitory role of guanosine 3′, 5′-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators (1981) Blood, 57, pp. 946-955
  • Radomski, M.-W., Palmer, R.M.J., Moncada, S., An L-arginine/nitric oxide pathway present in human platelets regulates aggregation (1990) Proc. Natl. Acad. Sci. USA, 87, pp. 5193-5197
  • Sase, K., Michel, T., Expression of constitutive endothelial nitric oxide synthase in human blood platelets (1995) Life Sci., 57, pp. 2049-2055
  • Moncada, S., Radomski, M.W., Palmer, R.M., Endothelium-derived relaxing factor. Identification as nitric oxide and role in the control of vascular tone and platelet function (1988) Biochem. Pharmacol., 37, pp. 2495-2501
  • Schmidt, H.H., Hofmann, H., Schindler, U., No NO from NO synthase (1996) Proc. Natl. Acad. Sci. USA, 93, pp. 14492-14497
  • Adak, S., Wang, Q., Stuehr, D.J., Arginine conversion to nitroxide by tetrahydrobiopterin-free neuronal nitric-oxide synthase: Implications for mechanism (2000) J. Biol. Chem., 275, pp. 33554-33561
  • Xia, Y., Zweier, J.L., Direct measurement of nitric oxide generation from nitric oxide synthase (1997) Proc. Natl. Acad. Sci. USA, 94, pp. 12705-12710
  • Tatarko, M., Bumpus, J.A., Further studies on the inactivation by sodium azide of lignin peroxidase from Phanerochaete chrysosporium (1997) Arch. Biochem. Biophys., 339, pp. 200-209
  • Arnelle, D.R., Stamler, J.S., NO+, NO, and NO- donation by S-nitrosothiols: Implications for regulation of physiological functions by S-nitrosylation and acceleration of disulfide formation (1995) Arch. Biochem. Biophys., 318, pp. 279-285
  • Khan, A.U., Kovacic, D., Kolbanovskiy, A., The decomposition of peroxynitrite to nitroxyl anion (NO-) and singlet oxygen in aqueous solution (2000) Proc. Natl. Acad. Sci. USA, 97, pp. 2984-2989
  • Sharpe, M.A., Cooper, C.E., Reactions of nitric oxide with mitochondrial cytochrome c: A novel mechanism for the formation of nitroxyl anion and peroxynitrite (1998) Biochem. J., 332, pp. 9-19
  • Miranda, K.M., The chemistry of nitroxyl (HNO) and implications in biology (2005) Coordination Chemistry Reviews, 249, pp. 433-455
  • Ma, X.L., Gao, F., Liu, G.L., Opposite effects of nitric oxide and nitroxyl on postischemic myocardial injury (1999) Proc. Natl. Acad. Sci. USA, 96, pp. 14617-14622
  • Paolocci, N., Katori, T., Champion, H.C., Positive inotropic and lusitropic effects of HNO/NO- In failing hearts: Independence from beta-adrenergic signaling (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 5537-5542
  • Miranda, K.M., Nims, R.W., Thomas, D.D., Comparison of the reactivity of nitric oxide and nitroxyl with heme proteins. A chemical discussion of the differential biological effects of these redox related products of NOS (2003) J. Inorg. Biochem., 93, pp. 52-60
  • Wong, P.S., Hyun, J., Fukuto, J.M., Reaction be- tween S-nitrosothiols and thiols: Generation of nitroxyl (HNO) and subsequent chemistry (1998) Biochemistry, 37, pp. 5362-5371
  • Feelisch, M., Nitroxyl gets to the heart of the matter (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 4978-4980
  • Mondoro, T.H., Ryan, B.B., Hrinczenko, B.W., Biological action of nitric oxide donor compounds on platelets from patients with sickle cell disease (2001) Br. J. Haematol., 112, pp. 1048-1054
  • Angeli, A., Angelico, F., Nuove richerche sopra l'acido nitroidrossilamminico (1903) Gazz Chim. Ital., 33, pp. 245-252
  • Bonner, F.T., Ravid, B., Thermal decomposition of oxyhyponitrite (sodium trioxodinitrate II) in aqueous solution (1975) Inorg. Chem., 14, pp. 558-563
  • Miranda, K.M., Dutton, A.S., Ridnour, L.A., Mechanism of aerobic decomposition of Angeli's salt (sodium trioxodinitrate) at physiological pH (2005) J. Am. Chem. Soc., 127, pp. 722-731
  • Hughes, M.N., Cammack, R., Synthesis, chemistry, and applications of nitroxyl ion releasers sodium trioxodinitrate or Angeli's salt and Piloty's acid (1999) Methods Enzymol., 301, pp. 279-287
  • Hourdillé, P., Hasitz, M., Belloc, F., Immunocytochemical study of the binding of fibrinogen and thrombospondin to ADP- and thrombin -stimulated human platelets (1985) Blood, 65, pp. 912-920
  • Born, G.V.R., Aggregation of blood platelets by adenosine diphosphate and its reversal (1962) Nature, 194, pp. 927-929
  • Feinman, R.D., Lubowsky, J., Charo, I.F., The lumiaggregometer: A new instrument for simultaneous measurement of secretion and aggregation (1977) J. Lab. Clin. Med., 90, pp. 125-129
  • Michelson, A.-D., Flow cytometry: A clinical test of platelet function (1996) Blood, 87, pp. 4925-4936
  • Shattil, S.-J., Cunningham, M., Hoxic, J.-A., Detection of activated platelets in whole blood using activation-dependent monoclonal antibodies and flow cytometry (1987) Blood, 70, pp. 307-315
  • Chudzinski-Tavassi, A.M., Bermejo, E., Rosenstein, R.E., Nitridergic platelet pathway activation by hementerin, a metalloprotease from the leech Haementeria depressa (2003) Biol. Chem., 384, pp. 1333-1339
  • Ellis, A., Li, C.G., Rand, M.J., Differential actions of L-cysteine on responses to nitric oxide, nitroxyl anions and EDRF in the rat aorta (2000) Br. J. Pharmacol., 129, pp. 315-322
  • Pino, R., Feelisch, M., Bioassay discrimination between nitric oxide (NO) and nitroxyl (NO-) using L-cysteine (1994) Biochem. Biophys. Res. Commun., 201, pp. 54-62
  • Vaananen, A.J., Moed, M., Tuominen, R.K., Angeli's salt induces neurotoxicity in dopaminergic neurons in vivo and in vitro (2003) Free Radic. Res., 37, pp. 381-389
  • Miranda, K.M., Paolocci, N., Katori, T., A biochemical rationale for the discrete behavior of nitroxyl and nitric oxide in the cardiovascular system (2003) Proc. Natl. Acad. Sci. USA, 100, pp. 9196-9201
  • Zamora, R., Grzesiok, A., Weber, H., Oxidative release of nitric oxide accounts for guanylyl cyclase stimulating, vasodilator and anti-platelet activity of Piloty's acid: A comparison with Angeli's salt (1995) Biochem. J., 312, pp. 333-339
  • Dierks, E.A., Burstyn, I.N., Nitric oxide (NO), the only nitrogen monoxide redox form capable of activating soluble guanylyl cyclase (1996) Biochem. Pharmacol., 51, pp. 1593-1600
  • Fukuto, J.M., Chiang, K., Hszieh, R., The pharmacological activity of nitroxyl: A potent vasodilator with activity similar to nitric oxide and/or endothelium-derived relaxing factor (1992) J. Pharmacol. Exp. Ther., 263, pp. 546-551
  • Vanuffelen, B.E., Van Der Zee, J., De Koster, B.M., Intracellular but not extracellular conversion of nitroxyl anion into nitric oxide leads to stimulation of human neutrophil migration (1998) Biochem. J., 330, pp. 719-722
  • Costa, G., Labadia, A., Triguero, D., Nitrergic relaxation in urethral smooth muscle: Involvement of potassium channels and alternative redox forms of NO (2001) Naunyn Schmiedebergs Arch. Pharmacol., 364, pp. 516-523
  • Wanstall, J.C., Jeffery, T.K., Gambino, A., Vascular smooth muscle relaxation mediated by nitric oxide donors: A comparison with acetylcholine, nitric oxide and nitroxyl ion (2001) Br. J. Pharmacol., 134, pp. 463-472
  • Yan, B., Smith, J.W., A redox site involved in integrin activation (2000) J. Biol. Chem., 275, pp. 39964-39972
  • Keh, D., Thieme, A., Kurer, I., Inactivation of platelet glycoprotein IIb/IIIa receptor by nitric oxide donor 3-morpholino-sydnonimine (2003) Blood Coagul. Fibrinolysis, 14, pp. 327-334
  • Maurice, D.H., Haslam, R.J., Molecular basis of the synergistic inhibition of platelet function by nitro-vasodilators and activators of adenylate cyclase: Inhibition of cyclic AMP breakdown by cyclic GMP (1990) Mol. Pharmacol., 37, pp. 671-681
  • Beavo, J.A., Cyclic nucleotide phosphodiesterases: Functional implications of multiple isoforms (1995) Physiol. Rev., 75, pp. 725-748
  • Li, Z., Xi, X., Gu, M., A stimulatory role for cGMP-dependent protein kinase in platelet activation (2003) Cell, 112, pp. 77-86
  • Jensen, B.O., Selheim, F., Doskeland, S.O., Protein kinase A mediates inhibition of the thrombin-induced platelet shape change by nitric oxide (2004) Blood, 104, pp. 2775-2782
  • Li, Z., Ajdic, J., Eigenthaler, M., A predominant role for CAMP-dependent protein kinase in the cGMP-induced phosphorylation of vasodilator-stimulated phosphoprotein and platelet inhibition in humans (2003) Blood, 101, pp. 4423-4429
  • Jang, E.K., Azzam, J.E., Dickinson, N.T., Roles for both cyclic GMP and cyclic AMP in the inhibition of collagen-induced platelet aggregation by nitroprus-side (2002) Br. J. Haematol., 117, pp. 664-675
  • Li, Z., Zhang, G., Marjanovic, J.A., A platelet secretion pathway mediated by cGMP-dependent protein kinase (2004) J. Biol. Chem., 279, pp. 42469-42475

Citas:

---------- APA ----------
Bermejo, E., Sáenz, D.A., Alberto, F., Rosenstein, R.E., Bari, S.E. & Lazzari, M.A. (2005) . Effect of nitroxyl on human platelets function. Thrombosis and Haemostasis, 94(3), 578-584.
http://dx.doi.org/10.1160/TH05-01-0062
---------- CHICAGO ----------
Bermejo, E., Sáenz, D.A., Alberto, F., Rosenstein, R.E., Bari, S.E., Lazzari, M.A. "Effect of nitroxyl on human platelets function" . Thrombosis and Haemostasis 94, no. 3 (2005) : 578-584.
http://dx.doi.org/10.1160/TH05-01-0062
---------- MLA ----------
Bermejo, E., Sáenz, D.A., Alberto, F., Rosenstein, R.E., Bari, S.E., Lazzari, M.A. "Effect of nitroxyl on human platelets function" . Thrombosis and Haemostasis, vol. 94, no. 3, 2005, pp. 578-584.
http://dx.doi.org/10.1160/TH05-01-0062
---------- VANCOUVER ----------
Bermejo, E., Sáenz, D.A., Alberto, F., Rosenstein, R.E., Bari, S.E., Lazzari, M.A. Effect of nitroxyl on human platelets function. Thromb. Haemost. 2005;94(3):578-584.
http://dx.doi.org/10.1160/TH05-01-0062