Artículo

La versión final de este artículo es de uso interno de la institución.
Consulte el artículo en la página del editor
Consulte la política de Acceso Abierto del editor

Abstract:

The water regime affects a wide variety of physiological and biochemical processes in plants including an increased production of reactive oxygen species (ROS) capable of causing oxidative damage to proteins, DNA and lipids. Arbuscular mycorrhizal fungi (AMF) colonize a wide range of plant species though the ability of different AMF species to promote host growth or contribute to plant water deficit resistance varies. The first phase of olive tree cultivation takes place in a nursery where plants usually suffer stress by drying. Currently, olive production systems do not use of AMF to counteract this problem. To study the colonization strategies of two AMF strains and their efficiency with respect to growth and their effect on enzymatic activities, we inoculated them individually and co-inoculated then on olive plants under nursery growing conditions. The results showed the benefits generated by these fungi in terms of growth and survival rate. Co-inoculation, particularly, improved growth and reduced the damage due to water stress, partly as a result of the activation of the antioxidant defenses in the olive plant host. © 2013 Springer Science+Business Media Dordrecht.

Registro:

Documento: Artículo
Título:Differential efficiency of two strains of the arbuscular mycorrhizal fungus Rhizophagus irregularis on olive (Olea europaea) plants under two water regimes
Autor:Bompadre, M.J.; Rios De Molina, M.C.; Colombo, R.P.; Fernandez Bidondo, L.; Silvani, V.A.; Pardo, A.G.; Ocampo, J.A.; Godeas, A.M.
Filiación:Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160 4to piso, Pabellón 2, C1428EGA Buenos Aires, Argentina
Departamento de Química Biológica. IQUIBICEN Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160 4to piso, Pabellón 2, C1428EGA Buenos Aires, Argentina
Laboratorio de Micología Molecular. Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD Bernal Buenos Aires, Argentina
Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda, 1, 18008 Granada, Spain
Palabras clave:Arbuscular mycorrhizal fungim; Ascorbate peroxidase; Catalase; Glutathione reductase; Nursery; Superoxide dismutase; antioxidant; arbuscular mycorrhiza; colonization; cultivation; damage; DNA; enzyme; fungus; growth rate; plant; root colonization; survival
Año:2013
Volumen:61
Número:2
Página de inicio:105
Página de fin:112
DOI: http://dx.doi.org/10.1007/s13199-013-0260-0
Título revista:Symbiosis
Título revista abreviado:Symbiosis
ISSN:03345114
CODEN:SYMBE
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03345114_v61_n2_p105_Bompadre

Referencias:

  • Aebi, H., Catalase in vitro (1984) Meth Enzymol, 105, pp. 121-126. , 1:CAS:528:DyaL2cXltVKis7s%3D 6727660 10.1016/S0076-6879(84)05016-3
  • Al-Karaki, G.N., Benefit, cost and water-use efficiency of arbuscular mycorrhizal durum wheat grown under drought stress (1998) Mycorriza, 8 (1), pp. 41-45. , 10.1007/s005720050209
  • Al-Karaki, G., McMichael, B., Zak, J., Field response of wheat to arbuscular mycorrhizal fungi and drought stress (2004) Mycorriza, 14, pp. 263-269. , 10.1007/s00572-003-0265-2
  • Augé, R.M., Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis (2001) Mycorriza, 11, pp. 3-42. , 10.1007/s005720100097
  • Beyer, W.F., Fridovich, I., Assaying for superoxide dismutase activity: Some large consequences of minor changes in conditions (1987) Anal Biochem, 161, pp. 559-566. , 1:CAS:528:DyaL2sXktVaqtb8%3D 3034103 10.1016/0003-2697(87)90489-1
  • Bonfante, P., Genre, A., Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis (2010) Nat Commun, , 10.1038/ncomms.1046 20975705
  • Bradford, M.M., A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding (1976) Anal Biochem, 72, pp. 248-254. , 1:CAS:528:DyaE28XksVehtrY%3D 942051 10.1016/0003-2697(76)90527-3
  • Calberg, I., Mannervik, B., Glutathione reductase (1985) Meth Enzymol, 113, pp. 484-489. , 10.1016/S0076-6879(85)13062-4
  • Calvelo, J., (2011) Cosecha de la Aceituna Negra en Mendoza, Argentina, , http://ladiaria.com.uy/articulo/2011/7/cosecha-de-la-aceituna-negra-en- mendoza-argentina/, Diario La Diaria Retrieved July, 2011
  • Calvente, R., Cano, C., Ferrol, N., Azcón-Aguilar, C., Barea, J.M., Analysing natural diversity of arbuscular mycorrhizal fungi in olive tree (Olea europaea L.) plantations and assessment of the effectiveness of native fungal isolates as inoculants for commercial cultivars of olive plantlets (2004) Appl Soil Ecol, 26, pp. 11-19. , 10.1016/j.apsoil.2003.10.009
  • Clewer, A.G., Scarisbrick, D.H., Factorial experiments (2001) Practical Statistics and Experimental Design for Plant and Crop Science, pp. 159-181. , John Wiley Sons Ltd (eds) The Atrium Chicheste
  • (2004) Faostat Statistical Databases, , http://faostat.fao.org/site/636/DesktopDefault.aspx?PageID=636#ancor, FAO Accessed October 5, 2012
  • Franco, J.A., Bañón, S., Vicente, M.J., Miralles, J., Martínez-Sánchez, J.J., Root development in horticultural plants grown under abiotic stress conditions - A review (2011) J Hort Science Biotechnol, 86 (6), pp. 543-556
  • Gerdemann, J.W., Vesicular-arbuscular mycorrhizae (1975) The Development and Function of Root, pp. 575-591. , J.G. Torrey D.T. Clarkson (eds) Academic New York
  • Giovanetti, M., Mosse, B., An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots (1980) New Phytol, 84, pp. 489-500. , 10.1111/j.1469-8137.1980.tb04556.x
  • Gogorcena, Y., Iturbe-Ormaetxe, I., Escuredo, P.R., Becana, M., Antioxidant defense against activated oxygen in pea nodules subjected to water stress (1995) Plant Physiol, 108, pp. 753-759. , 1:CAS:528:DyaK2MXmtlaqsL4%3D 157397 12228507
  • Hewitt, E.J., Sand and water culture methods in the study of plant nutrition (1952) Tech Com Agric Bur, 22
  • Hodges, D.M., Delong, J.M., Forney, C.F., Prange, R.K., Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds (1999) Planta, 207 (4), pp. 604-611. , 1:CAS:528:DyaK1MXhslKisLw%3D 10.1007/s004250050524
  • Hossain, M.A., Asada, K., Inactivation of ascorbate peroxidase in spinach chloroplasts on dark addition of hydrogen peroxide: Its protection by ascorbate (1984) Plant & Cell Physiol, 25 (7), pp. 1285-1295. , 1:CAS:528:DyaL2cXmt1Oit7g%3D
  • Janoušková, M., Seddas, P., Mrnka, L., Van Tuinen, D., Dvorácková, A., Tollot, M., Gianinazzi-Pearson, V., Gollotte, A., Development and activity of Glomus intraradices as affected by co-existence with Glomus claroideum in one root system (2009) Mycorrhiza, 19, pp. 393-402. , 19377892 10.1007/s00572-009-0243-4
  • Knight, P., Coker, C.H., Anderson, J.M., Murchison, D.S., Watson, C.E., Mist interval and K-IBA concentration influence rooting of orange and mountain azalea (2005) Native Plants, 6 (2), pp. 111-117
  • Krüger, M., Krüger, C., Walker, C., Stockinger, H., Schüßler, A., Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level (2012) New Phytol, 193, pp. 970-984. , 22150759 10.1111/j.1469-8137.2011.03962.x
  • Marín, M., Arbuscular mycorrhizal inoculation in nursery practice (2005) Handbook of Microbial Biofertilizers, pp. 289-324. , M.K. Rai (eds) Food Products Press® An Imprint of the Haworth Press, Inc New York
  • Menge, J.A., Johnson, E.L.V., Platt, R.G., Mycorrhizal dependency of several citrus cultivars under three nutrient regimes (1978) New Phytol, 81 (3), pp. 553-559. , 1:CAS:528:DyaE1MXosFymtQ%3D%3D 10.1111/j.1469-8137.1978.tb01628.x
  • Miller, G., Nobuhiro, S., Ciftci-Yilmaz, S., Mittler, R., Reactive oxygen species homeostasis and signalling during drought and salinity stresses (2010) Plant Cell Environ, 33, pp. 453-467. , 1:CAS:528:DC%2BC3cXltV2hur8%3D 19712065 10.1111/j.1365-3040.2009.02041.x
  • Mittler, R., Oxidative stress, antioxidants and stress tolerance (2002) Trends Plant Sci, 7 (9), pp. 405-410. , 1:CAS:528:DC%2BD38XntVWnu7Y%3D 12234732 10.1016/S1360-1385(02)02312-9
  • Moran, J.F., Becana, M., Iturbe-Ormaetxe, I., Frechilla, S., Klukas, R.V., Aparicio-Tejo, P., Drought induces oxidative stress in pea plants (1994) Planta, 194 (3), pp. 346-352. , 1:CAS:528:DyaK2cXlsFentL0%3D 10.1007/BF00197534
  • Parodi, L.R., (1978) Enciclopedia Argentina de Agricultura y Jardinería. Tomo 1, Volumen 2, p. 1114. , Editorial ACME Buenos Aires
  • Phillips, J.M., Hayman, D.S., Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infections (1970) Trans Brit Mycol Soc, 55, pp. 158-161. , 10.1016/S0007-1536(70)80110-3
  • Porcel, R., Ruíz-Lozano, J.M., Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress (2004) J Exp Bot, 55 (403), pp. 1743-1750. , 1:CAS:528:DC%2BD2cXntValt7s%3D 15208335 10.1093/jxb/erh188
  • Porcel, R., Barea, J.M., Ruíz-Lozano, J.M., Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence (2003) New Phytol, 157, pp. 135-143. , 1:CAS:528:DC%2BD3sXht1Siu74%3D 10.1046/j.1469-8137.2003.00658.x
  • Roldán, A., Díaz-Vivancos, P., Hernández, J.A., Carrasco, L., Caravaca, F., Superoxide dismutase and total peroxidase activities in relation to drought recovery performance of mycorrhizal shrub seedlings grown in an amended semiarid soil (2008) J Plant Physiol, 165 (7), pp. 715-722. , 17913291 10.1016/j.jplph.2007.02.007
  • Ruíz-Lozano, J.M., Azcón, R., Palma, J.M., Superoxide dismutase activity in arbuscular mycorrhizal Latuca sativa plants subjected to drought stress (1996) New Phytol, 134 (2), pp. 327-333. , 10.1111/j.1469-8137.1996.tb04637.x
  • Ruíz-Lozano, J.M., Porcel, R., Azcón, C., Aroca, R., Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: New challenges in physiological and molecular studies (2012) J Exp Bot, 63 (11), pp. 4033-4044. , 22553287 10.1093/jxb/ers126
  • Sánchez-Díaz, M., Aguirreolea, J., El agua en la planta (2002) Fundamentos de Fisiología Vegetal, pp. 17-30. , J. Azcon-Bieto M. y Talon (eds) McGraw-Hill-Interamericana Madrid
  • Schüßler, A., Schwarzott, D., Walker, C., A new fungal phylum, the Glomeromycota: Phylogeny and evolution (2001) Mycol Res, 105 (12), pp. 1413-1421. , 10.1017/S0953756201005196
  • (2006), http://www.sinavimo.gov.ar/cultivo/olivo, SENASA Accessed Dec 2011; Silvani, V.A., (2011) Aislamiento y Caracterización in Vitro de Hongos Micorrícicos Arbusculares de Diferentes Sitios en Argentina, , Ph. D. Thesis. FCEyN. UBA
  • Smith, S.E., Read, D.J., (2008) Mycorrhizal Symbiosis, , 3 Academic London
  • Trappe, J.M., Phylogenetic and ecologic aspects of mycotrophy in angiosperms from an evolutionary standpoint (1986) Ecophysiology of VA Mycorrhizal Plants, pp. 5-25. , G.R. Safir (eds) CRC Press Boca Raton Florida
  • Wu, Q.S., Zou, Y.N., Mycorrhiza has a direct effect on reactive oxygen metabolism of drought-stressed citrus (2009) Plant Soil Environ, 55 (10), pp. 436-442. , 1:CAS:528:DC%2BD1MXhtl2htLvI
  • Wu, Q.S., Xia, R.X., Zou, Y.N., Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress (2006) J Plant Physiol, 163 (11), pp. 1101-1110. , 1:CAS:528:DC%2BD28Xht1ylsbjP 17032615 10.1016/j.jplph.2005.09.001
  • Wu, Q.S., Zou, Y.N., Xia, R.X., Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots (2006) Europ J Soil Biol, 42, pp. 166-172. , 1:CAS:528:DC%2BD28XptFCntLg%3D 10.1016/j.ejsobi.2005.12.006
  • Wu, Q.S., Xia, R.X., Zou, Y.N., Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress (2008) Europ J Soil Biol, 44, pp. 122-128. , 10.1016/j.ejsobi.2007.10.001
  • Wu, Q.S., Zou, Y.N., Liu, W., Ye, X.F., Zai, H.F., Zao, L.J., Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: Changes in leaf antioxidant defense systems (2010) Plant Soil Environ, 56, pp. 470-475. , 1:CAS:528:DC%2BC3cXhsVWksL%2FF

Citas:

---------- APA ----------
Bompadre, M.J., Rios De Molina, M.C., Colombo, R.P., Fernandez Bidondo, L., Silvani, V.A., Pardo, A.G., Ocampo, J.A.,..., Godeas, A.M. (2013) . Differential efficiency of two strains of the arbuscular mycorrhizal fungus Rhizophagus irregularis on olive (Olea europaea) plants under two water regimes. Symbiosis, 61(2), 105-112.
http://dx.doi.org/10.1007/s13199-013-0260-0
---------- CHICAGO ----------
Bompadre, M.J., Rios De Molina, M.C., Colombo, R.P., Fernandez Bidondo, L., Silvani, V.A., Pardo, A.G., et al. "Differential efficiency of two strains of the arbuscular mycorrhizal fungus Rhizophagus irregularis on olive (Olea europaea) plants under two water regimes" . Symbiosis 61, no. 2 (2013) : 105-112.
http://dx.doi.org/10.1007/s13199-013-0260-0
---------- MLA ----------
Bompadre, M.J., Rios De Molina, M.C., Colombo, R.P., Fernandez Bidondo, L., Silvani, V.A., Pardo, A.G., et al. "Differential efficiency of two strains of the arbuscular mycorrhizal fungus Rhizophagus irregularis on olive (Olea europaea) plants under two water regimes" . Symbiosis, vol. 61, no. 2, 2013, pp. 105-112.
http://dx.doi.org/10.1007/s13199-013-0260-0
---------- VANCOUVER ----------
Bompadre, M.J., Rios De Molina, M.C., Colombo, R.P., Fernandez Bidondo, L., Silvani, V.A., Pardo, A.G., et al. Differential efficiency of two strains of the arbuscular mycorrhizal fungus Rhizophagus irregularis on olive (Olea europaea) plants under two water regimes. Symbiosis. 2013;61(2):105-112.
http://dx.doi.org/10.1007/s13199-013-0260-0