Artículo

Estamos trabajando para incorporar este artículo al repositorio
Consulte la política de Acceso Abierto del editor

Abstract:

In this study, we show that depth-integrated pelagic primary production (PP) can exceed bacterioplankton production (BP) in vegetated humic shallow lakes, giving as a result an autotrophic water column, despite light restrictions and availability of organic carbon for lake bacteria. Intuitively, these conditions should favor the development of a heterotrophic water column. Instead, during our survey, BP represented between 1.3 to 5% of PP most of the time. Only once, during late summer, BP was ~71% of PP. Although we cannot conclude about the mechanisms behind the observed results, previous surveys and experimentation in the wetland allow us to hypothesize that autotrophic conditions were favored by: i) the shallow nature of the lakes, which compensates for light attenuation by organic matter when integrating production in the water column, ii) the presence of anaerobic anoxygenic photosynthetic bacteria below the macrophyte cover, and iii) high predation rates on bacterioplankton by heterotrophic flagellates below the floating plants. © 2016, Asociacion Argentina de Ecologia. All rights reserved.

Registro:

Documento: Artículo
Título:Relationship between phytoplankton and bacterioplankton production in vegetated humic shallow lakes
Autor:Aguilar Zurita, A.; Rodríguez, P.
Filiación:Defense against desertification and land conservation office (DSyLCD), Ministry of Environment and Sustainable Development (MayDS), Ciudad de Buenos Aires, Argentina
Austral Centre for Scientific Research (CADIC-CONICET), Ushuaia, Tierra del Fuego, Argentina
Departamento de Ecología, Genética yEvolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
Palabras clave:Floating plants; Primary production; aquatic plant; bacterioplankton; depth; heterotrophy; humid environment; lagoon; organic carbon; pelagic ecosystem; photosynthesis; primary production; shallow water; water column; wetland; Mastigophora (flagellates); Photobacteria
Año:2016
Volumen:26
Número:3
Página de inicio:305
Página de fin:310
Título revista:Ecologia Austral
Título revista abreviado:Ecol. Austral
ISSN:03275477
Registro:https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03275477_v26_n3_p305_AguilarZurita

Referencias:

  • Algesten, G., Sobek, S., Bergström, A.K., Jonsson, A., Tranvik, L.J., Jansson, M., Contribution of sediment respiration to summer CO2 emission from low productive boreal and subarctic lakes (2005) Microbial Ecology, 50, pp. 529-535
  • Andersson, E., Brunberg, A.-K., Net autotrophy in an oligotrophic lake rich in dissolved organic carbon and with high benthic primary production (2006) Aquatic Microbial Ecology, 43, pp. 1-10
  • Ask, J., Karlsson, J., Persson, L., Ask, P., Byström, P., Jansson, M., Terrestrial organic matter and light penetration: Effects on bacterial and primary production in lakes (2009) Limnology and Oceanography, 54, pp. 2034-2040
  • (2005) Standard Methods for the Examination of Water and Wastewaters. American Water Works Association, 1656p. , Water Environmental Federation, Washington, DC
  • Battin, T.J., Luyssaert, S., Kaplan, L.A., Aufdenkampe, A.K., Richter, A., Tranvik, L.J., The boundless carbon cycle (2009) Nature Geosciences, 2, pp. 598-600
  • Cole, J.J., Pace, M.L., Carpenter, S., Kitchell, J.F., Persistence of net heterotrophy in lakes during nutrient addition and food web manipulations (2000) Limnology and Oceanography, 45, pp. 1718-1730
  • Del Giorgio, P.A., Cole, J.J., Cimbleris, A., Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems (1997) Nature, 385, pp. 148-151
  • Del Giorgio, P.A., Cole, J.J., Bacterial growth efficiency in natural aquatic systems (1998) Annual Review of Ecology and Systematics, 29, pp. 503-541
  • de Tezanos Pinto, P., O’Farrell, I., Regime shifts between free-floating plants and phytoplankton: A review (2014) Hydrobiologia, 740, pp. 13-24
  • Downing, J.A., Prairie, Y.T., Cole, J.J., Duarte, C.M., Tranvik, L.J., The global abundance and size distribution of lakes, ponds, and impoundments (2006) Limnology and Oceanography, 51, pp. 2388-2397
  • Falkowski, P.G., Raven, J.A., (2007) Aquatic Photosynthesis, 484p. , Princeton University Press
  • Holm-Hansen, O., Helbling, E.W., Techniques for measurement of primary production in phytoplankton (In Spanish) (1995) Phycological Methods Handbook (In Spanish), pp. 329-350. , K. Alveal, M. E. Ferrario, E. C. Oliveira and E. Sar (eds.), University of Concepción, Chile
  • Izaguirre, I., Pizarro, H., de Tezanos Pinto, P., Rodríguez, P., O’farrell, I., Unrein, F., Gasol, J.M., Macrophyte influence on the structure and productivity of photosynthetic picoplankton in wetlands (2010) Journal of Plankton Research, 32, pp. 221-238
  • Izaguirre, I., Sinistro, R., Schiaffino, M.R., Sánchez, M.L., Unrein, F., Massana, R., Grazing rates of protists in wetlands under contrasting light conditions due to floating plants (2012) Aquatic Microbial Ecology, 65, pp. 221-232
  • Jansson, M., Bergström, A.K., Blomqvist, P., Drakare, S., Allochtonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes (2000) Ecology, 81, pp. 3250-3255
  • Jansson, M., Karlsson, J., Jonsson, A., Carbon dioxide supersaturation promotes primary production in lakes (2012) Ecology Letters, 15, pp. 527-532
  • Jasser, I., Kostrzewska-Szlakowska, I., Ejsmont-Karabin, J., Kalinowska, K., Weglenska, T., Autotrophic versus heterotrophic production and components of trophic chain in humic lakes: The role of microbial communities (2009) Polish Journal of Ecology, 57, pp. 423-439
  • Jespersen, A.M., Christoffersen, K., Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent (1987) Archiv für Hydrobiologie, 109, pp. 445-454
  • Jones, R.I., The influence of humic substances on lacustrine planktonic food chains (1992) Hydrobiologia, 229, pp. 73-91
  • Kirchman, D.L., (2012) Processes in Microbial Ecology, 312p. , Oxford University Press
  • Kirk, J.T.O., (2011) Light and Photosynthesis in Aquatic Ecosystems, 649p. , University Press, Cambridge, UK
  • Kortelainen, P., Rantakari, M., Huttunen, J.T., Mattsson, T., Alm, J., Sediment respiration and lake trophic state are important predictors of large CO2 evasion from small boreal lakes (2006) Global Change Biology, 12, pp. 1554-1567
  • Lovett, G.M., Cole, J.J., Pace, M.L., Is net ecosystem production equal to ecosystem carbon accumulation? (2006) Ecosystems, 9, pp. 152-155
  • Peixoto, R.B., Marotta, H., Bastviken, D., Enrich-Prast, A., Floating aquatic macrophytes can substantially offset open water CO2emissions from tropical floodplain lake ecosystems (2016) Ecosystems
  • Reche, I., Pace, M.L., Cole, J.J., Interactions of photobleaching and inorganic nutrients in determining bacterial growth on colored dissolved organic carbon (1998) Microbial Ecology, 36, pp. 270-280
  • Rodríguez, P., Pizarro, H., Phytoplankton productivity in a highly colored shallow lake of a South American floodplain (2007) Wetlands, 27, pp. 1153-1160
  • Rodríguez, P., Pizarro, H., Vera, M.S., Size fractionated phytoplankton production in two humic shallow lakes with contrasting coverage of free floating plants (2012) Hydrobiologia, 691, pp. 285-298
  • Rodríguez, P., Pizarro, H., Phytoplankton and periphyton production and its relation to temperature in a humic lagoon (2015) Limnologica, 55, pp. 9-12
  • Roehm, C., Giesler, R., Karlsson, J., Bioavailability of terrestrial organic carbon to lake bacteria: The case of a degrading subarctic permafrost mire complex (2009) Journal of Geophysical Research: Biogeosciences, 114, p. G03006
  • Simon, M., Azam, F., Protein content and protein synthesis rates of planktonic marine bacteria (1989) Marine Ecology Progress Series, 51, pp. 201-213
  • Smith, D.C., Azam, F., A simple, economical method for measuring bacterial protein synthesis rates in sea water using 3H-Leucine (1992) Marine Microbial Food Webs, 6, pp. 107-109
  • Stanley, E.H., Johnson, M.D., Ward, A.K., Evaluating the influence of macrophytes on algal and bacterial production in multiple habitats of a freshwater wetland (2003) Limnology and Oceanography, 48, pp. 1101-1111
  • Stumm, W., Morgan, J., (1996) Aquatic Chemistry, 1040p. , Wiley, New York

Citas:

---------- APA ----------
Aguilar Zurita, A. & Rodríguez, P. (2016) . Relationship between phytoplankton and bacterioplankton production in vegetated humic shallow lakes . Ecologia Austral, 26(3), 305-310.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03275477_v26_n3_p305_AguilarZurita [ ]
---------- CHICAGO ----------
Aguilar Zurita, A., Rodríguez, P. "Relationship between phytoplankton and bacterioplankton production in vegetated humic shallow lakes " . Ecologia Austral 26, no. 3 (2016) : 305-310.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03275477_v26_n3_p305_AguilarZurita [ ]
---------- MLA ----------
Aguilar Zurita, A., Rodríguez, P. "Relationship between phytoplankton and bacterioplankton production in vegetated humic shallow lakes " . Ecologia Austral, vol. 26, no. 3, 2016, pp. 305-310.
Recuperado de https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03275477_v26_n3_p305_AguilarZurita [ ]
---------- VANCOUVER ----------
Aguilar Zurita, A., Rodríguez, P. Relationship between phytoplankton and bacterioplankton production in vegetated humic shallow lakes . Ecol. Austral. 2016;26(3):305-310.
Available from: https://bibliotecadigital.exactas.uba.ar/collection/paper/document/paper_03275477_v26_n3_p305_AguilarZurita [ ]