Estamos trabajando para incorporar este artículo al repositorio
Consulte la política de Acceso Abierto del editor


Fibrin is a protein network present in the clot. It can be characterized by its structure, fibers dimensions, ramification degree, porosity, viscoelasticity and deformability. All these properties depend on temperature, ions concentrations and on other plasmatic substances, mainly fibrinogen, thrombin and factor XIII. Greater fibrinogen or thrombin concentrations produce more dense, less porous and shorter fibered-fibrin networks. Fibrinogen alterations can generate abnormal fibrin, with different susceptibility to lysis, while calcium ions increase the fibrin networks' rigidity and porosity. Plasminogen activation and fibrinolysis rate are strongly dependent on the size and the fibrin network architecture. Tight networks are lysed more slowly while, within the same gel, thin fibers are lysed before thick ones. Otherwise, thicker fibers proved to be a better cofactor of plasminogen activation. Taking into account these factors helps understand the different fibrinolytic response, mainly when it is not explained by laboratory studies.


Documento: Artículo
Título:Fibrin network variability
Autor:Lauricella, A.M.
Filiación:Universidad de Buenos Aires, Área Química Biológica, Argentina
Int. Güiraldes 2160, Pabellón II, Ciudad Universitaria, C1428EHA Cd. Auton. de Buenos Aires, Argentina
Palabras clave:Fibrin; Fibrin properties; Fibrin-formation; Fibrinogen
Página de inicio:7
Página de fin:19
Título revista:Acta Bioquimica Clinica Latinoamericana
Título revista abreviado:Acta Bioquim. Clin. Latinoam.


  • Mosesson, M.W., Fibrinogen and fibrin polymerization and functions (1999) Blood Coagul Fibrinolysis, 10 (SUPPL. 1), pp. S45-S48
  • Erickson, H.P., Fowler, W.E., Electron microscopy of fibrinogen, its plasmic fragments and polymers (1983) Ann N Y Acad Sci, 408, pp. 146-163
  • Weisel, J.W., Stauffacher, C.V., Bullitt, E., Cohen, C., A model for fibrinogen: Domains and sequence (1985) Science, 230, pp. 1388-1391
  • Fu, Y., Grieninger, G., Fib420: A normal human variant of fibrinogen with two extended chains (1994) Proc Natl Acad Sci USA, 91, p. 2625
  • Nieuwenhuizen, W., Biochemistry and measurement of fibrinogen (1995) Eur Heart J, 16, pp. 6-10
  • Spraggon, G., Applegate, D., Everse, S.J., Zhang, J.Z., Verapandian, L., Redman, C., Crystal structure of a recombinant alphaEC domain from human fibrinogen-420 (1998) Proc Natl Acad Sci USA, 95 (16), pp. 9099-9104
  • Mosesson, M.W., Fibrinogen gamma chain functions (2003) J Thromb Haemost, 1 (2), pp. 231-238
  • Wolfenstein-Todel, C., Mosesson, M.W., Human plasma fibrinogen heterogeneity: Evidence for an extended carboxil-terminal sequence in a normal gamma chain variant (γ′) (1980) Proc Natl Acad Sci USA, 77, pp. 5069-5073
  • Siebenlist, K.R., Meh, D.A., Mosesson, M.W., Plasma factor XIII binds specifically to fibrinogen molecules containing γ′ chain (1996) Biochemistry, 35, pp. 10448-10453
  • Mosesson, M.W., Siebenlist, K.R., Hernandez, I., Wall, J.S., Hainfeld, J.F., Fibrinogen assembly and crosslinking on a fibrin fragment E template (2002) Thromb Haemost, 87 (4), pp. 651-658
  • Mosesson, M.W., Fibrinogen and fibrin structure and functions (2005) J Thromb Haemost, 3 (8), pp. 1894-1904
  • Kaminski, M., Siebenlist, K.R., Mosesson, M.W., Evidence for thrombin enhancement of fibrin polymerization that is independent of its catalytic activity (1991) J Lab Clin Med, 117, pp. 218-225
  • Lorand, L., Factor XIII: Structure, activation and interaction with fibrinogen and fibrin (2001) Ann NY Acad Sci, 936, pp. 291-311
  • Tsurupa, G., Medved, L., Identification and characterization of novel t-PA and plasminogen-binding sites within fibrin(ogen) alpha C-domains (2001) Biochemistry, 40, pp. 801-808
  • Farrell, D.H., Thiagarajan, P., Chung, D.W., Davie, E.W., Role of fibrinogen alpha and gamma chain sites in platelet aggregation (1992) Proc Natl Acad Sci USA, 89, pp. 10729-10732
  • Dejana, E., Zanetti, A., Conforti, L.G., Biochemical and functional characteristics of fibrinogen interaction with endothelial cells (1988) Haemostasis, 18, pp. 262-270
  • Pereira, M., Rybarczyk, B.J., Odrljin, T.M., Hocking, D.C., Sottile, J., Simpson-Haidaris, P.J., The incorporation of fibrinogen into extracellular matrix is dependent on active assembly of a fibronectin matrix (2002) J Cell Sci, 115 (PART 3), pp. 609-617
  • Mosesson, M.W., Siebenlist, K.R., Meh, D.A., The structure and biological features of fibrinogen and fibrin (2001) Ann N Y Acad Sci, 936, pp. 11-30
  • Weisel, J.W., Fibrinogen and fibrin (2005) Adv Protein Chem, 70, pp. 247-299
  • Sahni, A., Khorana, A.A., Baggs, R.B., Peng, H., Francis, C.W., FGF-2 binding to fibrin(ogen) is required for augmented angiogenesis (2006) Blood, 107 (1), pp. 126-131
  • Shiose, S., Hata, Y., Noda, Y., Sassa, Y., Takeda, A., Yoshikawa, H., Fibrinogen stimulates in vitro angiogenesis by choroidal endothelial cells via autocrine VEGF (2004) Graefes Arch Clin Exp Ophthalmol, 242 (9), pp. 777-783
  • Sahni, A., Sahni, S.K., Francis, C.W., Endothelial cell activation by IL-1beta in the presence of fibrinogen requires alphavbeta3 (2005) Arterioscler Thromb Vasc Biol, 25 (10), pp. 2222-2227
  • Medved, L., Nieuwenhuizen, W., Molecular mechanisms of initiation of fibrinolysis by fibrin (2003) Thromb Haemost, 89, pp. 409-419
  • Hettasch JM, Greenberg CS. Fibrin formation and stabilization. In: Thrombosis and Hemorrhage. 2° ed. Baltimore (Maryland, EUA): Lozcalzo J and Schafer AI Eds.; 1998. p. 129-154; Gorkun, O.V., Veklich, Y.I., Medved, L.V., Henschen, A.H., Weisel, J.W., Role of the αC domains of fibrin in clot formation (1994) Biochemistry, 33, pp. 6986-6997
  • Siebenlist, K.R., Meh, D.A., Mosesson, M.W., Protransglutaminase (Factor XIII) mediated cross-linking of fibrinogen and fibrin (2001) Thromb Haemost, 86, pp. 1221-1228
  • Blombäck, B., Carlsson, K., Hessel, B., Liljeborg, A., Procyc, R., Aslund, N., Native fibrin gel networks observed by 3 D microscopy, permeation and turbidity (1989) Biochim Biophys Acta, 997, pp. 96-110
  • Lauricella, A.M., Quintana, I., Kordich, L., Effect of homocysteine thiol group on fibrin networks: Another possible mechanism of harm (2002) Thromb Res, 107, pp. 75-79
  • Collet, J.P., Park, D., Lesty, C., Soria, J., Soria, C., Montalescot, G., Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed. Dynamic and structural approaches by confocal microscopy (2000) Arterioscler Thromb Vasc Biol, 20, pp. 1354-1361
  • Weisel, J., Veklich, Y., Collet, J., Francis, C., Structural studies of fibrinolysis by electron and light microscopy (1999) Thromb Haemost, 82 (2), pp. 277-282
  • Lukacova, D., Matsueda, G.R., Haber, E., Reed, G.L., Inhibition of factor XIII activation by an anti-peptide monoclonal antibody (1991) Biochemistry, 30 (42), pp. 10164-10170
  • Mosesson, M.W., Hernandez, I., Siebenlist, K.R., Evidence that catalytically-inactivated thrombin forms non-covalently linked dimers that bridge between fibrin/fibrinogen fibers and enhance fibrin polymerization (2004) Biophys Chem, 110 (1-2), pp. 93-100
  • Scheiner, T., Jirouskova, M., Nagaswami, C., Coller, B.S., Weisel, J.W., A monoclonal antibody to the fibrinogen gamma-chain alters fibrin clot structure and its properties by producing short, thin fibers arranged in bundles (2003) J Thromb Haemost, 1 (12), pp. 2594-2602
  • Lee, K.N., Jackson, K.W., Christiansen, V.J., Chung, K.H., McKee, P.A., A novel plasma proteinase α2-antiplasmin inhibition of fibrin digestion (2004) Blood, 103 (10), pp. 3783-3788
  • Vaziri, N.D., Kennedy, S.C., Kennedy, M., Gonzalez, E., Coagulation, fibrinolytic, and inhibitory proteins in acute myocardial infarction and angina pectoris (1994) Am J Med, 96 (6), p. 571
  • Kaijzel, E.L., Koolwijk, P., van Erck, M.G., van Hinsbergh, V.W., de Maat, M.P., Molecular weight fibrinogen variants determine angiogenesis rate in a fibrin matrix in vitro and in vivo (2006) J Thromb Haemost, 4 (9), pp. 1975-1981
  • Siebenlist, K.R., Mosesson, M.W., Hernandez, I., Bush, L.A., Di Cera, E., Shainoff, J.R., Studies on the basis for the properties of fibrin produced from fibrinogen-containing gamma' chains (2005) Blood, 106 (8), pp. 2730-2736
  • Hamano, A., Mimuro, J., Aoshima, M., Itoh, T., Kitamura, N., Nishinarita, S., Thrombophilic dysfibrinogen Tokyo V with the amino acid substitution of gammaAla327Thr: Formation of fragile but fibrinolysis-resistant fibrin clots and its relevance to arterial thromboembolism (2004) Blood, 103 (8), pp. 3045-3050
  • Marchi, R., Carvajal, Z., Meyer, M., Soria, J., Ruiz-Saez, A., Arocha-Pinango, C.L., Fibrinogen Guarenas, an abnormal fibrinogen with an Aalpha-chain truncation due to a nonsense mutation at Aalpha 467 Glu (GAA) - >stop (TAA) (2006) Thromb Res, 118 (5), pp. 637-650
  • Hessel B, Silveira AM, Carlsson K, Oksa H, Rasi V, Vahtera E. Fibrinogenemia Tampere. A dysfibrinogenemia with defective gelation and thromboembolic disease. Thromb Res 1995; 78 (4): 323-39; Sugo, T., Endo, H., Matsuda, M., Ohmori, T., Madoiwa, S., Mimuro, J., A classification of the fibrin network structures formed from the hereditary dysfibrinogens (2006) J Thromb Haemost, 4 (8), pp. 1738-1746
  • Blombäck, B., Banerjee, D., Carlsson, K., Hamsten, A., Hessel, B., Procyk, R., Silveira, A., Native fibrin gel networks and factors influencing their formation in health and disease (1990) Adv Exp Med Biol, 281, pp. 1-23
  • Okada, M., Blombäck, B., Calcium and fibrin gel structure (1983) Thromb Res, 29, pp. 69-280
  • Marx, G., Divalent cations induce protofibril gelation (1988) Am J Hemat, 27, pp. 104-109
  • Kostelansky, M.S., Betts, L., Gorkun, O.V., Lord, S.T., 2.8 A crystal structures of recombinant fragment D with and without two peptide ligands: GHRP binding to the "b" site disrupts its nearby calcium-binding site (2002) Biochemistry, 41, pp. 12124-12132
  • Dang, C.V., Shin, C.K., Bell, W.R., Nagaswami, C., Weisel, J.W., Fibrinogen sialic acid residues are low affinity calcium binding sites that influence fibrin assembly (1989) J Biol Chem, 264 (25), pp. 15104-15108
  • Hardy, J.J., Carrell, N.A., McDonagh, J., Calcium ion functions in fibrinogen conversion to fibrin (1983) Ann N Y Acad Sci, 408, pp. 279-287
  • Blomback, B., Carlsson, K., Fatah, K., Hessel, B., Procyk, R., Fibrin in human plasma: Gel architecture governed by rate and nature of fibrinogen activation (1994) Thromb Res, 75, pp. 521-538
  • Ryan, E.A., Mochros, L.F., Weisel, J.W., Lorand, L., Structural origin of fibrin clot rheology (1999) Biophys J, 77, pp. 2813-2826
  • Nair, C.H., Azhar, A., Wilson, J.D., Dhall, D.P., Studies of fibrin network structure in human plasma. Part II. Clinical application: Diabetic and antidiabetic drug (1991) Thromb Res, 64, pp. 477-485
  • Jörneskog, G., Egberg, N., Fagrell, B., Fatah, K., Hessel, B., Johnsson, H., Altered properties of the fibrin gel structure in patients with IDDM (1996) Diabetología, 39, pp. 1519-1523
  • Martínez, J., MacDonald, K.A., Palascak, J.E., The role of sialic acid in the dysfibrinogenemia associated with leaver disease: Distribution of sialic acid on the constituent chains (1983) Blood, 61, pp. 1196-1202
  • Yoshida, Y., Shiiki, H., Iwano, M., Uyama, H., Hamano, K., Nishino, T., Enhanced expression of plasminogen activator inhibitor 1 in patients with nephrotic syndrome (2001) Nephron, 88 (1), pp. 24-29
  • Weisel, J., Veklich, Y., Collet, J., Francis, C., Structural studies of fibrinolysis by electron and light microscopy (1999) Thromb Haemost, 82 (2), pp. 277-282
  • Collet, J.P., Park, D., Lesty, C., Soria, J., Soria, C., Montalescot, G., Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed. Dynamic and structural approaches by confocal microscopy (2000) Arterioscler Thromb Vasc Biol, 20, pp. 1354-1361
  • Kolev, K., Machovich, R., Molecular and cellular modulation of fibrinolysis (2003) Thromb Haemost, 89, pp. 610-621
  • Gabriel, D.A., Muga, K., Boothroyd, E.M., The effect of fibrin structure in fibrinolysis (1992) J Biol Chem, 267, pp. 24259-24263
  • Sabovic, M., Blinc, A., Biochemical and biophysical conditions for blood clot lysis (2000) Eur J Physiol, 440 (SUPPL.), pp. R134-R136
  • Wu, J.H., Siddiqui, K., Diamond, S., Transport phenomena and clot dissolving therapy: An experimental investigation of diffusion-controlled and permeation-enhanced fibrinolysis (1994) Thromb Haemost, 72 (1), pp. 105-112
  • Mills, J.D., Ariens, R.A., Mansfield, M.W., Grant, P.J., Altered fibrin clot structure in the healthy relatives of patients with premature coronary artery disease (2002) Circulation, 106 (15), pp. 1938-1942
  • Fatah, K., Silveira, A., Tornvall, P., Karpe, F., Blomback, M., Hamsten, A., Proneness to formation of tight and rigid fibrin gel structures in men with myocardial infarction at a young age (1996) Thromb Haemost, 76 (4), pp. 535-540
  • Lim BC, Ariens RA, Carter AM, Weisel JW, Grant PJ. Genetic regulation of fibrin structure and function: complex gene-environment interactions may modulate vascular risk. Lancet 2003; 361 (9367): 1424-31. Erratum in: Lancet 2003; 361 (9376): 2250; Lauricella, A.M., Quintana, I.L., Sassetti, B., Castañón, M.M., Kordich, L.C., Influence of homocysteine on fibrin network lysis (2006) Blood Coagul Fibrinol, 17, pp. 181-186


---------- APA ----------
(2007) . Fibrin network variability . Acta Bioquimica Clinica Latinoamericana, 41(1), 7-19.
Recuperado de [ ]
---------- CHICAGO ----------
Lauricella, A.M. "Fibrin network variability " . Acta Bioquimica Clinica Latinoamericana 41, no. 1 (2007) : 7-19.
Recuperado de [ ]
---------- MLA ----------
Lauricella, A.M. "Fibrin network variability " . Acta Bioquimica Clinica Latinoamericana, vol. 41, no. 1, 2007, pp. 7-19.
Recuperado de [ ]
---------- VANCOUVER ----------
Lauricella, A.M. Fibrin network variability . Acta Bioquim. Clin. Latinoam. 2007;41(1):7-19.
Available from: [ ]